BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 22323724)

  • 21. Defective trafficking of rhodopsin and its role in retinal degenerations.
    Hollingsworth TJ; Gross AK
    Int Rev Cell Mol Biol; 2012; 293():1-44. PubMed ID: 22251557
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Photoactivation-induced instability of rhodopsin mutants T4K and T17M in rod outer segments underlies retinal degeneration in X. laevis transgenic models of retinitis pigmentosa.
    Tam BM; Noorwez SM; Kaushal S; Kono M; Moritz OL
    J Neurosci; 2014 Oct; 34(40):13336-48. PubMed ID: 25274813
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The severe autosomal dominant retinitis pigmentosa rhodopsin mutant Ter349Glu mislocalizes and induces rapid rod cell death.
    Hollingsworth TJ; Gross AK
    J Biol Chem; 2013 Oct; 288(40):29047-55. PubMed ID: 23940033
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Alterations in retinal rod outer segment fatty acids and light-damage susceptibility in P23H rats.
    Bicknell IR; Darrow R; Barsalou L; Fliesler SJ; Organisciak DT
    Mol Vis; 2002 Sep; 8():333-40. PubMed ID: 12355060
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rhodopsin mutant P23H destabilizes rod photoreceptor disk membranes.
    Haeri M; Knox BE
    PLoS One; 2012; 7(1):e30101. PubMed ID: 22276148
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mislocalized rhodopsin does not require activation to cause retinal degeneration and neurite outgrowth in Xenopus laevis.
    Tam BM; Xie G; Oprian DD; Moritz OL
    J Neurosci; 2006 Jan; 26(1):203-9. PubMed ID: 16399688
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of rhodopsin mis-sorting and constitutive activation in a transgenic rat model of retinitis pigmentosa.
    Green ES; Menz MD; LaVail MM; Flannery JG
    Invest Ophthalmol Vis Sci; 2000 May; 41(6):1546-53. PubMed ID: 10798675
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Disrupted Plasma Membrane Protein Homeostasis in a
    Ropelewski P; Imanishi Y
    J Neurosci; 2019 Jul; 39(28):5581-5593. PubMed ID: 31061086
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Shifting the balance of autophagy and proteasome activation reduces proteotoxic cell death: a novel therapeutic approach for restoring photoreceptor homeostasis.
    Qiu Y; Yao J; Jia L; Thompson DA; Zacks DN
    Cell Death Dis; 2019 Jul; 10(8):547. PubMed ID: 31320609
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rhodopsin accumulation at abnormal sites in retinas of mice with a human P23H rhodopsin transgene.
    Roof DJ; Adamian M; Hayes A
    Invest Ophthalmol Vis Sci; 1994 Nov; 35(12):4049-62. PubMed ID: 7960587
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Probing mechanisms of photoreceptor degeneration in a new mouse model of the common form of autosomal dominant retinitis pigmentosa due to P23H opsin mutations.
    Sakami S; Maeda T; Bereta G; Okano K; Golczak M; Sumaroka A; Roman AJ; Cideciyan AV; Jacobson SG; Palczewski K
    J Biol Chem; 2011 Mar; 286(12):10551-67. PubMed ID: 21224384
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Early loss of synaptic protein PSD-95 from rod terminals of rhodopsin P347L transgenic porcine retina.
    Blackmon SM; Peng YW; Hao Y; Moon SJ; Oliveira LB; Tatebayashi M; Petters RM; Wong F
    Brain Res; 2000 Dec; 885(1):53-61. PubMed ID: 11121529
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Zebrafish Model of Retinitis Pigmentosa Shows Continuous Degeneration and Regeneration of Rod Photoreceptors.
    Santhanam A; Shihabeddin E; Atkinson JA; Nguyen D; Lin YP; O'Brien J
    Cells; 2020 Oct; 9(10):. PubMed ID: 33036185
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Temporal Contrast Sensitivity Increases despite Photoreceptor Degeneration in a Mouse Model of Retinitis Pigmentosa.
    Pasquale RL; Guo Y; Umino Y; Knox B; Solessio E
    eNeuro; 2021; 8(2):. PubMed ID: 33509952
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ablation of Chop Transiently Enhances Photoreceptor Survival but Does Not Prevent Retinal Degeneration in Transgenic Mice Expressing Human P23H Rhodopsin.
    Chiang WC; Joseph V; Yasumura D; Matthes MT; Lewin AS; Gorbatyuk MS; Ahern K; LaVail MM; Lin JH
    Adv Exp Med Biol; 2016; 854():185-91. PubMed ID: 26427410
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CRISPR/Cas9-Mediated Models of Retinitis Pigmentosa Reveal Differential Proliferative Response of Müller Cells between
    Parain K; Lourdel S; Donval A; Chesneau A; Borday C; Bronchain O; Locker M; Perron M
    Cells; 2022 Feb; 11(5):. PubMed ID: 35269429
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ribozyme rescue of photoreceptor cells in a transgenic rat model of autosomal dominant retinitis pigmentosa.
    Lewin AS; Drenser KA; Hauswirth WW; Nishikawa S; Yasumura D; Flannery JG; LaVail MM
    Nat Med; 1998 Aug; 4(8):967-71. PubMed ID: 9701253
    [TBL] [Abstract][Full Text] [Related]  

  • 38. P23H opsin knock-in mice reveal a novel step in retinal rod disc morphogenesis.
    Sakami S; Kolesnikov AV; Kefalov VJ; Palczewski K
    Hum Mol Genet; 2014 Apr; 23(7):1723-41. PubMed ID: 24214395
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rhodopsin gene expression determines rod outer segment size and rod cell resistance to a dominant-negative neurodegeneration mutant.
    Price BA; Sandoval IM; Chan F; Nichols R; Roman-Sanchez R; Wensel TG; Wilson JH
    PLoS One; 2012; 7(11):e49889. PubMed ID: 23185477
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phenotypic characterization of P23H and S334ter rhodopsin transgenic rat models of inherited retinal degeneration.
    LaVail MM; Nishikawa S; Steinberg RH; Naash MI; Duncan JL; Trautmann N; Matthes MT; Yasumura D; Lau-Villacorta C; Chen J; Peterson WM; Yang H; Flannery JG
    Exp Eye Res; 2018 Feb; 167():56-90. PubMed ID: 29122605
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.