BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 22324507)

  • 1. Physical defect formation in few layer graphene-like carbon on metals: influence of temperature, acidity, and chemical functionalization.
    Schumacher CM; Grass RN; Rossier M; Athanassiou EK; Stark WJ
    Langmuir; 2012 Mar; 28(9):4565-72. PubMed ID: 22324507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Few-layer graphene shells and nonmagnetic encapsulates: a versatile and nontoxic carbon nanomaterial.
    Bachmatiuk A; Mendes RG; Hirsch C; Jähne C; Lohe MR; Grothe J; Kaskel S; Fu L; Klingeler R; Eckert J; Wick P; Rümmeli MH
    ACS Nano; 2013 Dec; 7(12):10552-62. PubMed ID: 24215570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physical vapor deposition of metal nanoparticles on chemically modified graphene: observations on metal-graphene interactions.
    Pandey PA; Bell GR; Rourke JP; Sanchez AM; Elkin MD; Hickey BJ; Wilson NR
    Small; 2011 Nov; 7(22):3202-10. PubMed ID: 21953833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trapping of metal atoms in vacancies of carbon nanotubes and graphene.
    Rodríguez-Manzo JA; Cretu O; Banhart F
    ACS Nano; 2010 Jun; 4(6):3422-8. PubMed ID: 20499848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidation resistance of graphene-coated Cu and Cu/Ni alloy.
    Chen S; Brown L; Levendorf M; Cai W; Ju SY; Edgeworth J; Li X; Magnuson CW; Velamakanni A; Piner RD; Kang J; Park J; Ruoff RS
    ACS Nano; 2011 Feb; 5(2):1321-7. PubMed ID: 21275384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wet chemical functionalization of graphene.
    Hirsch A; Englert JM; Hauke F
    Acc Chem Res; 2013 Jan; 46(1):87-96. PubMed ID: 22946482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A green approach to the synthesis of graphene nanosheets.
    Guo HL; Wang XF; Qian QY; Wang FB; Xia XH
    ACS Nano; 2009 Sep; 3(9):2653-9. PubMed ID: 19691285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards understanding the effects of carbon and nitrogen-doped carbon coating on the electrochemical performance of Li4Ti5O12 in lithium ion batteries: a combined experimental and theoretical study.
    Ding Z; Zhao L; Suo L; Jiao Y; Meng S; Hu YS; Wang Z; Chen L
    Phys Chem Chem Phys; 2011 Sep; 13(33):15127-33. PubMed ID: 21789334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of pH, ionic strength, dissolved organic carbon, time, and particle size on metals release from mine drainage impacted streambed sediments.
    Butler BA
    Water Res; 2009 Mar; 43(5):1392-402. PubMed ID: 19110291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidizing metal ions with graphene oxide: the in situ formation of magnetic nanoparticles on self-reduced graphene sheets for multifunctional applications.
    Xue Y; Chen H; Yu D; Wang S; Yardeni M; Dai Q; Guo M; Liu Y; Lu F; Qu J; Dai L
    Chem Commun (Camb); 2011 Nov; 47(42):11689-91. PubMed ID: 21952144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dense monolayers of metal-chelating ligands covalently attached to carbon electrodes electrochemically and their useful application in affinity binding of histidine-tagged proteins.
    Blankespoor R; Limoges B; Schöllhorn B; Syssa-Magalé JL; Yazidi D
    Langmuir; 2005 Apr; 21(8):3362-75. PubMed ID: 15807575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single step synthesis of graphene nanoribbons by catalyst particle size dependent cutting of multiwalled carbon nanotubes.
    Parashar UK; Bhandari S; Srivastava RK; Jariwala D; Srivastava A
    Nanoscale; 2011 Sep; 3(9):3876-82. PubMed ID: 21842103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The possibility of chemically inert, graphene-based all-carbon electronic devices with 0.8 eV gap.
    Qi JS; Huang JY; Feng J; Shi da N; Li J
    ACS Nano; 2011 May; 5(5):3475-82. PubMed ID: 21456598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and electronic properties of chemically functionalized graphene on metal surfaces.
    Grüneis A
    J Phys Condens Matter; 2013 Jan; 25(4):043001. PubMed ID: 23257769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving the electrode performance of Ge through Ge@C core-shell nanoparticles and graphene networks.
    Xue DJ; Xin S; Yan Y; Jiang KC; Yin YX; Guo YG; Wan LJ
    J Am Chem Soc; 2012 Feb; 134(5):2512-5. PubMed ID: 22260540
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solid-phase synthesis of graphitic carbon nanostructures from iron and cobalt gluconates and their utilization as electrocatalyst supports.
    Sevilla M; Salinas Martínez-de Lecea C; Valdés-Solís T; Morallón E; Fuertes AB
    Phys Chem Chem Phys; 2008 Mar; 10(10):1433-42. PubMed ID: 18309400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ nucleation of carbon nanotubes by the injection of carbon atoms into metal particles.
    Rodríguez-Manzo JA; Terrones M; Terrones H; Kroto HW; Sun L; Banhart F
    Nat Nanotechnol; 2007 May; 2(5):307-11. PubMed ID: 18654289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Liquid-phase exfoliation, functionalization and applications of graphene.
    Cui X; Zhang C; Hao R; Hou Y
    Nanoscale; 2011 May; 3(5):2118-26. PubMed ID: 21479307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal speciation dynamics in monodisperse soft colloidal ligand suspensions.
    Duval JF; Pinheiro JP; van Leeuwen HP
    J Phys Chem A; 2008 Aug; 112(31):7137-51. PubMed ID: 18636700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of carbon nanoscrolls from monolayer graphene.
    Xia D; Xue Q; Xie J; Chen H; Lv C; Besenbacher F; Dong M
    Small; 2010 Sep; 6(18):2010-9. PubMed ID: 20715074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.