These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 22324699)
1. Insulator-to-metal transition in selenium-hyperdoped silicon: observation and origin. Ertekin E; Winkler MT; Recht D; Said AJ; Aziz MJ; Buonassisi T; Grossman JC Phys Rev Lett; 2012 Jan; 108(2):026401. PubMed ID: 22324699 [TBL] [Abstract][Full Text] [Related]
2. Understanding of sub-band gap absorption of femtosecond-laser sulfur hyperdoped silicon using synchrotron-based techniques. Limaye MV; Chen SC; Lee CY; Chen LY; Singh SB; Shao YC; Wang YF; Hsieh SH; Hsueh HC; Chiou JW; Chen CH; Jang LY; Cheng CL; Pong WF; Hu YF Sci Rep; 2015 Jun; 5():11466. PubMed ID: 26098075 [TBL] [Abstract][Full Text] [Related]
3. Insight into insulator-to-metal transition of sulfur-doped silicon by DFT calculations. Zhao ZY; Yang PZ Phys Chem Chem Phys; 2014 Sep; 16(33):17499-506. PubMed ID: 25019287 [TBL] [Abstract][Full Text] [Related]
4. Transition Metal-Hyperdoped InP Semiconductors as Efficient Solar Absorber Materials. García G; Sánchez-Palencia P; Palacios P; Wahnón P Nanomaterials (Basel); 2020 Feb; 10(2):. PubMed ID: 32046033 [TBL] [Abstract][Full Text] [Related]
5. Room-temperature sub-band gap optoelectronic response of hyperdoped silicon. Mailoa JP; Akey AJ; Simmons CB; Hutchinson D; Mathews J; Sullivan JT; Recht D; Winkler MT; Williams JS; Warrender JM; Persans PD; Aziz MJ; Buonassisi T Nat Commun; 2014; 5():3011. PubMed ID: 24385050 [TBL] [Abstract][Full Text] [Related]
6. Electronic Band Structure and Sub-band-gap Absorption of Nitrogen Hyperdoped Silicon. Zhu Z; Shao H; Dong X; Li N; Ning BY; Ning XJ; Zhao L; Zhuang J Sci Rep; 2015 May; 5():10513. PubMed ID: 26012369 [TBL] [Abstract][Full Text] [Related]
7. Molecular to atomic phase transition in hydrogen under high pressure. McMinis J; Clay RC; Lee D; Morales MA Phys Rev Lett; 2015 Mar; 114(10):105305. PubMed ID: 25815944 [TBL] [Abstract][Full Text] [Related]
8. Origin of the metallic properties of heavily boron-doped superconducting diamond. Yokoya T; Nakamura T; Matsushita T; Muro T; Takano Y; Nagao M; Takenouchi T; Kawarada H; Oguchi T Nature; 2005 Dec; 438(7068):647-50. PubMed ID: 16319887 [TBL] [Abstract][Full Text] [Related]
9. First principles simulations of microscopic mechanisms responsible for the drastic reduction of electrical deactivation defects in Se hyperdoped silicon. Debernardi A Phys Chem Chem Phys; 2021 Nov; 23(43):24699-24710. PubMed ID: 34709267 [TBL] [Abstract][Full Text] [Related]
10. A first-order Mott transition in LixCoO2. Marianetti CA; Kotliar G; Ceder G Nat Mater; 2004 Sep; 3(9):627-31. PubMed ID: 15322532 [TBL] [Abstract][Full Text] [Related]
11. Optical conductivity measurements of GaTa4Se8 under high pressure: evidence of a bandwidth-controlled insulator-to-metal Mott transition. Ta Phuoc V; Vaju C; Corraze B; Sopracase R; Perucchi A; Marini C; Postorino P; Chligui M; Lupi S; Janod E; Cario L Phys Rev Lett; 2013 Jan; 110(3):037401. PubMed ID: 23373949 [TBL] [Abstract][Full Text] [Related]
12. Selenium segregation in femtosecond-laser hyperdoped silicon revealed by electron tomography. Haberfehlner G; Smith MJ; Idrobo JC; Auvert G; Sher MJ; Winkler MT; Mazur E; Gambacorti N; Gradečak S; Bleuet P Microsc Microanal; 2013 Jun; 19(3):716-25. PubMed ID: 23570747 [TBL] [Abstract][Full Text] [Related]
13. Mott-hubbard metal-insulator transition in paramagnetic V2O3: an LDA+DMFT(QMC) study. Held K; Keller G; Eyert V; Vollhardt D; Anisimov VI Phys Rev Lett; 2001 Jun; 86(23):5345-8. PubMed ID: 11384494 [TBL] [Abstract][Full Text] [Related]
14. Reliability of the one-crossing approximation in describing the Mott transition. Vildosola V; Pourovskii LV; Manuel LO; Roura-Bas P J Phys Condens Matter; 2015 Dec; 27(48):485602. PubMed ID: 26565588 [TBL] [Abstract][Full Text] [Related]
15. Quantum Monte Carlo study of an interaction-driven band-insulator-to-metal transition. Paris N; Bouadim K; Hebert F; Batrouni GG; Scalettar RT Phys Rev Lett; 2007 Jan; 98(4):046403. PubMed ID: 17358793 [TBL] [Abstract][Full Text] [Related]
16. Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties. Heine T Acc Chem Res; 2015 Jan; 48(1):65-72. PubMed ID: 25489917 [TBL] [Abstract][Full Text] [Related]
17. Tweaking the Electronic and Optical Properties of α-MoO Bandaru S; Saranya G; English NJ; Yam C; Chen M Sci Rep; 2018 Jul; 8(1):10144. PubMed ID: 29973657 [TBL] [Abstract][Full Text] [Related]
18. Indirect to direct band gap transition in ultra-thin silicon films. Lin L; Li Z; Feng J; Zhang Z Phys Chem Chem Phys; 2013 Apr; 15(16):6063-7. PubMed ID: 23493906 [TBL] [Abstract][Full Text] [Related]
19. Metal-insulator transitions in the half-filled ionic Hubbard model. Hoang AT J Phys Condens Matter; 2010 Mar; 22(9):095602. PubMed ID: 21389421 [TBL] [Abstract][Full Text] [Related]
20. Optical Spectroscopic Studies of the Metal-Insulator Transition Driven by All-In-All-Out Magnetic Ordering in 5d Pyrochlore Cd(2)Os(2)O(7). Sohn CH; Jeong H; Jin H; Kim S; Sandilands LJ; Park HJ; Kim KW; Moon SJ; Cho DY; Yamaura J; Hiroi Z; Noh TW Phys Rev Lett; 2015 Dec; 115(26):266402. PubMed ID: 26765010 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]