These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 22324706)

  • 1. Genetic-algorithm discovery of a direct-gap and optically allowed superstructure from indirect-gap Si and Ge semiconductors.
    d'Avezac M; Luo JW; Chanier T; Zunger A
    Phys Rev Lett; 2012 Jan; 108(2):027401. PubMed ID: 22324706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genomic design of strong direct-gap optical transition in Si/Ge core/multishell nanowires.
    Zhang L; d'Avezac M; Luo JW; Zunger A
    Nano Lett; 2012 Feb; 12(2):984-91. PubMed ID: 22216831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Composition-dependent band gaps and indirect-direct band gap transitions of group-IV semiconductor alloys.
    Zhu Z; Xiao J; Sun H; Hu Y; Cao R; Wang Y; Zhao L; Zhuang J
    Phys Chem Chem Phys; 2015 Sep; 17(33):21605-10. PubMed ID: 26222374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular-based synthetic approach to new group IV materials for high-efficiency, low-cost solar cells and Si-based optoelectronics.
    Fang YY; Xie J; Tolle J; Roucka R; D'Costa VR; Chizmeshya AV; Menendez J; Kouvetakis J
    J Am Chem Soc; 2008 Nov; 130(47):16095-102. PubMed ID: 19032100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electronic structure and optical properties of Si, Ge and diamond in the lonsdaleite phase.
    De A; Pryor CE
    J Phys Condens Matter; 2014 Jan; 26(4):045801. PubMed ID: 24592487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electronic and optical properties of hydrogenated group-IV multilayer materials.
    Pontes RB; Mançano RR; da Silva R; Cótica LF; Miwa RH; Padilha JE
    Phys Chem Chem Phys; 2018 Mar; 20(12):8112-8118. PubMed ID: 29517087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical studies of the passivants' effect on the Si(x)Ge(1-x) nanowires: composition profiles, diameter, shape, and electronic properties.
    Yang XB; Zhao YJ; Xu H
    J Chem Phys; 2013 Oct; 139(15):154713. PubMed ID: 24160539
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of High Sn Content Ge
    Kouvetakis J; Wallace PM; Xu C; Ringwala DA; Mircovich M; Roldan MA; Webster PT; Grant PC; Menéndez J
    ACS Appl Mater Interfaces; 2023 Oct; 15(41):48382-48394. PubMed ID: 37801731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct and quasi-direct band gap of novel Si-Ge alloys in
    Fan Q; Hao B; Yang F; Song Y; Yu X; Yun S
    J Phys Condens Matter; 2021 Jul; 33(38):. PubMed ID: 34229318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tight-binding calculation of optical gain in tensile strained [001]-Ge/SiGe quantum wells.
    Pizzi G; Virgilio M; Grosso G
    Nanotechnology; 2010 Feb; 21(5):055202. PubMed ID: 20023310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical Investigations of Si-Ge Alloys in P4₂/ncm Phase: First-Principles Calculations.
    Ma Z; Liu X; Yu X; Shi C; Yan F
    Materials (Basel); 2017 May; 10(6):. PubMed ID: 28772964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prismatic Ge-rich inclusions in the hexagonal SiGe shell of GaP-Si-SiGe nanowires by controlled faceting.
    Bergamaschini R; Plantenga RC; Albani M; Scalise E; Ren Y; Hauge HIT; Kölling S; Montalenti F; Bakkers EPAM; Verheijen MA; Miglio L
    Nanoscale; 2021 May; 13(20):9436-9445. PubMed ID: 34008608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Pathway to Type-I Band Alignment in Ge/Si Core-Shell Nanowires.
    Kim J; Lee JH; Hong KH
    J Phys Chem Lett; 2013 Jan; 4(1):121-6. PubMed ID: 26291223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum-confined photoluminescence from Ge(1-x)Sn(x)/Ge superlattices on Ge-buffered Si(001) substrates.
    Chang GE; Hsieh WY; Chen JZ; Cheng HH
    Opt Lett; 2013 Sep; 38(18):3485-7. PubMed ID: 24104794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct-gap optical gain of Ge on Si at room temperature.
    Liu J; Sun X; Kimerling LC; Michel J
    Opt Lett; 2009 Jun; 34(11):1738-40. PubMed ID: 19488166
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular synthesis of high-performance near-IR photodetectors with independently tunable structural and optical properties based on Si-Ge-Sn.
    Xu C; Beeler RT; Grzybowski GJ; Chizmeshya AV; Smith DJ; Menéndez J; Kouvetakis J
    J Am Chem Soc; 2012 Dec; 134(51):20756-67. PubMed ID: 23237361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tensilely Strained Ge Films on Si Substrates Created by Physical Vapor Deposition of Solid Sources.
    Li YS; Nguyen J
    Sci Rep; 2018 Nov; 8(1):16734. PubMed ID: 30425315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Infrared absorption of n-type tensile-strained Ge-on-Si.
    Wang X; Li H; Camacho-Aguilera R; Cai Y; Kimerling LC; Michel J; Liu J
    Opt Lett; 2013 Mar; 38(5):652-4. PubMed ID: 23455254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ge-rich SiGe-on-insulator for waveguide optical modulator application fabricated by Ge condensation and SiGe regrowth.
    Kim Y; Yokoyama M; Taoka N; Takenaka M; Takagi S
    Opt Express; 2013 Aug; 21(17):19615-23. PubMed ID: 24105508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of Si and Ge low-loss spectra to interpret the Ge contrast in EFTEM images of Si(1-x) Ge(x) nanostructures.
    Pantel R; Cheynet MC; Tichelaar FD
    Micron; 2006; 37(7):657-65. PubMed ID: 16529938
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.