These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 22324717)

  • 1. Active nonlinear microrheology in a glass-forming Yukawa fluid.
    Winter D; Horbach J; Virnau P; Binder K
    Phys Rev Lett; 2012 Jan; 108(2):028303. PubMed ID: 22324717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonlinear active micro-rheology in a glass-forming soft-sphere mixture.
    Winter D; Horbach J
    J Chem Phys; 2013 Mar; 138(12):12A512. PubMed ID: 23556763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Active microrheology in two-dimensional magnetic networks.
    Wang H; Mohorič T; Zhang X; Dobnikar J; Horbach J
    Soft Matter; 2019 Jun; 15(22):4437-4444. PubMed ID: 31011733
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Force-induced diffusion in microrheology.
    Harrer ChJ; Winter D; Horbach J; Fuchs M; Voigtmann T
    J Phys Condens Matter; 2012 Nov; 24(46):464105. PubMed ID: 23114229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microrheology of colloidal systems.
    Puertas AM; Voigtmann T
    J Phys Condens Matter; 2014 Jun; 26(24):243101. PubMed ID: 24848328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Asymptotic analysis of mode-coupling theory of active nonlinear microrheology.
    Gnann MV; Voigtmann T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011406. PubMed ID: 23005416
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature dependent micro-rheology of a glass-forming polymer melt studied by molecular dynamics simulation.
    Kuhnhold A; Paul W
    J Chem Phys; 2014 Sep; 141(12):124907. PubMed ID: 25273474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonlinear dynamic heat capacity of a bead-spring polymeric glass former.
    Brown JR; McCoy JD
    J Chem Phys; 2012 Dec; 137(24):244504. PubMed ID: 23277942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding the nonlinear dynamics of driven particles in supercooled liquids in terms of an effective temperature.
    Schroer CF; Heuer A
    J Chem Phys; 2015 Dec; 143(22):224501. PubMed ID: 26671384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonlinear response and crowding effects in microrheology.
    Ladadwa I; Heuer A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012302. PubMed ID: 23410326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thinning and thickening in active microrheology.
    Wang T; Sperl M
    Phys Rev E; 2016 Feb; 93(2):022606. PubMed ID: 26986376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Boiling temperature as a scaling parameter for the microscopic relaxation dynamics in molecular liquids.
    Mamontov E
    J Phys Chem B; 2013 Aug; 117(32):9501-7. PubMed ID: 23869489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polymer scaling and dynamics in steady-state sedimentation at infinite Péclet number.
    Lehtola V; Punkkinen O; Ala-Nissila T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 1):051802. PubMed ID: 18233676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oscillatory active microrheology of active suspensions.
    Knežević M; Avilés Podgurski LE; Stark H
    Sci Rep; 2021 Nov; 11(1):22706. PubMed ID: 34811417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rotational and translational diffusion in an interacting active dumbbell system.
    Cugliandolo LF; Gonnella G; Suma A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062124. PubMed ID: 26172678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Active microrheology in a colloidal glass.
    Gruber M; Abade GC; Puertas AM; Fuchs M
    Phys Rev E; 2016 Oct; 94(4-1):042602. PubMed ID: 27841487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonlinear microrheology: bulk stresses versus direct interactions.
    Squires TM
    Langmuir; 2008 Feb; 24(4):1147-59. PubMed ID: 18154310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular dynamics study of cage decay, near constant loss, and crossover to cooperative ion hopping in lithium metasilicate.
    Habasaki J; Ngai KL; Hiwatari Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Aug; 66(2 Pt 1):021205. PubMed ID: 12241162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Universal divergenceless scaling between structural relaxation and caged dynamics in glass-forming systems.
    Ottochian A; De Michele C; Leporini D
    J Chem Phys; 2009 Dec; 131(22):224517. PubMed ID: 20001067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Equilibrium theory of the hard sphere fluid and glasses in the metastable regime up to jamming. II. Structure and application to hopping dynamics.
    Jadrich R; Schweizer KS
    J Chem Phys; 2013 Aug; 139(5):054502. PubMed ID: 23927265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.