These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 22325153)

  • 21. Pore forming polyalkylpyridinium salts from marine sponges versus synthetic lipofection systems: distinct tools for intracellular delivery of cDNA and siRNA.
    McLaggan D; Adjimatera N; Sepcić K; Jaspars M; MacEwan DJ; Blagbrough IS; Scott RH
    BMC Biotechnol; 2006 Jan; 6():6. PubMed ID: 16412248
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The influence of alkyl pyridinium sponge toxins on membrane properties, cytotoxicity, transfection and protein expression in mammalian cells.
    Tucker SJ; McClelland D; Jaspars M; Sepcić K; MacEwan DJ; Scott RH
    Biochim Biophys Acta; 2003 Aug; 1614(2):171-81. PubMed ID: 12896810
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation of the antifouling properties of 3-alyklpyridine compounds.
    Blihoghe D; Manzo E; Villela A; Cutignano A; Picariello G; Faimali M; Fontana A
    Biofouling; 2011 Jan; 27(1):99-109. PubMed ID: 21181570
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanisms of toxicity of 3-alkylpyridinium polymers from marine sponge Reniera sarai.
    Turk T; Frangez R; Sepcić K
    Mar Drugs; 2007 Nov; 5(4):157-67. PubMed ID: 18463730
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cyclohaliclonamines A-E: dimeric, trimeric, tetrameric, pentameric, and hexameric 3-alkyl pyridinium alkaloids from a marine sponge Haliclona sp.
    Teruya T; Kobayashi K; Suenaga K; Kigoshi H
    J Nat Prod; 2006 Jan; 69(1):135-7. PubMed ID: 16441085
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biological activities of aqueous extracts from marine sponges and cytotoxic effects of 3-alkylpyridinium polymers from Reniera sarai.
    Sepcić K; Batista U; Vacelet J; Macek P; Turk T
    Comp Biochem Physiol C Pharmacol Toxicol Endocrinol; 1997 May; 117(1):47-53. PubMed ID: 9185326
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dependence of antimicrobial selectivity and potency on oligomer structure investigated using substrate supported lipid bilayers and sum frequency generation vibrational spectroscopy.
    Avery CW; Som A; Xu Y; Tew GN; Chen Z
    Anal Chem; 2009 Oct; 81(20):8365-72. PubMed ID: 19754103
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Membrane-destabilizing polyanions: interaction with lipid bilayers and endosomal escape of biomacromolecules.
    Yessine MA; Leroux JC
    Adv Drug Deliv Rev; 2004 Apr; 56(7):999-1021. PubMed ID: 15066757
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Viscosamine: the first naturally occurring trimeric 3-alkyl pyridinium alkaloid.
    Volk CA; Köck M
    Org Lett; 2003 Oct; 5(20):3567-9. PubMed ID: 14507174
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Behavior of synthetic polymers immobilized on a cell membrane.
    Teramura Y; Kaneda Y; Totani T; Iwata H
    Biomaterials; 2008 Apr; 29(10):1345-55. PubMed ID: 18191192
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rate of permeabilization of giant vesicles by amphiphilic polyacrylates compared to the adsorption of these polymers onto large vesicles and tethered lipid bilayers.
    Vial F; Cousin F; Bouteiller L; Tribet C
    Langmuir; 2009 Jul; 25(13):7506-13. PubMed ID: 19371041
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In vivo effects of head-to-tail 3-alkylpiridinium polymers isolated from the marine sponge Raniera sarai.
    Bunc M; Sepcic K; Turk T; Suput D
    Pflugers Arch; 2000; 440(5 Suppl):R173-4. PubMed ID: 11005659
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interactions of membrane active peptides with planar supported bilayers: an impedance spectroscopy study.
    Lin J; Motylinski J; Krauson AJ; Wimley WC; Searson PC; Hristova K
    Langmuir; 2012 Apr; 28(14):6088-96. PubMed ID: 22416892
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Intravascular plug formation induced by poly-APS is the principal mechanism of the toxin's lethality in rats/rat tissues.
    Bunc M; Sarc L; Rozman J; Turk T; Sepcic K; Suput D
    Cell Mol Biol Lett; 2002; 7(1):106-8. PubMed ID: 11944057
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interaction of nonionic PEO-PPO diblock copolymers with lipid bilayers.
    Firestone MA; Seifert S
    Biomacromolecules; 2005; 6(5):2678-87. PubMed ID: 16153106
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A membrane-bound synthetic receptor that promotes growth of a polymeric coating at the bilayer-water interface.
    Liu Y; Young MC; Moshe O; Cheng Q; Hooley RJ
    Angew Chem Int Ed Engl; 2012 Jul; 51(31):7748-51. PubMed ID: 22730162
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A polymer-based nanopore-integrated microfluidic device for generating stable bilayer lipid membranes.
    Kawano R; Osaki T; Sasaki H; Takeuchi S
    Small; 2010 Oct; 6(19):2100-4. PubMed ID: 20839243
    [No Abstract]   [Full Text] [Related]  

  • 38. Supported membranes with well-defined polymer tethers--incorporation of cell receptors.
    Purrucker O; Förtig A; Jordan R; Tanaka M
    Chemphyschem; 2004 Mar; 5(3):327-35. PubMed ID: 15067869
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Investigations of the interactions between synthetic antimicrobial polymers and substrate-supported lipid bilayers using sum frequency generation vibrational spectroscopy.
    Avery CW; Palermo EF; McLaughlin A; Kuroda K; Chen Z
    Anal Chem; 2011 Feb; 83(4):1342-9. PubMed ID: 21229969
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Micropatterned composite membranes of polymerized and fluid lipid bilayers.
    Morigaki K; Kiyosue K; Taguchi T
    Langmuir; 2004 Aug; 20(18):7729-35. PubMed ID: 15323525
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.