BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 22325287)

  • 1. The projection analysis of NMR chemical shifts reveals extended EPAC autoinhibition determinants.
    Selvaratnam R; VanSchouwen B; Fogolari F; Mazhab-Jafari MT; Das R; Melacini G
    Biophys J; 2012 Feb; 102(3):630-9. PubMed ID: 22325287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding cAMP-dependent allostery by NMR spectroscopy: comparative analysis of the EPAC1 cAMP-binding domain in its apo and cAMP-bound states.
    Mazhab-Jafari MT; Das R; Fotheringham SA; SilDas S; Chowdhury S; Melacini G
    J Am Chem Soc; 2007 Nov; 129(46):14482-92. PubMed ID: 17973384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The auto-inhibitory role of the EPAC hinge helix as mapped by NMR.
    Selvaratnam R; Mazhab-Jafari MT; Das R; Melacini G
    PLoS One; 2012; 7(11):e48707. PubMed ID: 23185272
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of dynamics in the autoinhibition and activation of the exchange protein directly activated by cyclic AMP (EPAC).
    VanSchouwen B; Selvaratnam R; Fogolari F; Melacini G
    J Biol Chem; 2011 Dec; 286(49):42655-42669. PubMed ID: 21873431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Entropy-driven cAMP-dependent allosteric control of inhibitory interactions in exchange proteins directly activated by cAMP.
    Das R; Mazhab-Jafari MT; Chowdhury S; SilDas S; Selvaratnam R; Melacini G
    J Biol Chem; 2008 Jul; 283(28):19691-703. PubMed ID: 18411261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural dynamics in the activation of Epac.
    Harper SM; Wienk H; Wechselberger RW; Bos JL; Boelens R; Rehmann H
    J Biol Chem; 2008 Mar; 283(10):6501-8. PubMed ID: 18167352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. cAMP-dependent allostery and dynamics in Epac: an NMR view.
    Selvaratnam R; Akimoto M; VanSchouwen B; Melacini G
    Biochem Soc Trans; 2012 Feb; 40(1):219-23. PubMed ID: 22260694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamically driven ligand selectivity in cyclic nucleotide binding domains.
    Das R; Chowdhury S; Mazhab-Jafari MT; Sildas S; Selvaratnam R; Melacini G
    J Biol Chem; 2009 Aug; 284(35):23682-96. PubMed ID: 19403523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Communication between the regulatory and the catalytic region of the cAMP-responsive guanine nucleotide exchange factor Epac.
    Rehmann H; Rueppel A; Bos JL; Wittinghofer A
    J Biol Chem; 2003 Jun; 278(26):23508-14. PubMed ID: 12707263
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of Selective Enzyme Inhibition through Uncompetitive Regulation of an Allosteric Agonist.
    Boulton S; Selvaratnam R; Blondeau JP; Lezoualc'h F; Melacini G
    J Am Chem Soc; 2018 Aug; 140(30):9624-9637. PubMed ID: 30016089
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of Epac activation: structural and functional analyses of Epac2 hinge mutants with constitutive and reduced activities.
    Tsalkova T; Blumenthal DK; Mei FC; White MA; Cheng X
    J Biol Chem; 2009 Aug; 284(35):23644-51. PubMed ID: 19553663
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Allosteric inhibition of Epac: computational modeling and experimental validation to identify allosteric sites and inhibitors.
    Brown LM; Rogers KE; Aroonsakool N; McCammon JA; Insel PA
    J Biol Chem; 2014 Oct; 289(42):29148-57. PubMed ID: 25183009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational States of Exchange Protein Directly Activated by cAMP (EPAC1) Revealed by Ensemble Modeling and Integrative Structural Biology.
    White MA; Tsalkova T; Mei FC; Cheng X
    Cells; 2019 Dec; 9(1):. PubMed ID: 31877746
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of Action of an EPAC1-Selective Competitive Partial Agonist.
    Shao H; Mohamed H; Boulton S; Huang J; Wang P; Chen H; Zhou J; Luchowska-Stańska U; Jentsch NG; Armstrong AL; Magolan J; Yarwood S; Melacini G
    J Med Chem; 2020 May; 63(9):4762-4775. PubMed ID: 32297742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of Dynamics in the Autoinhibition and Activation of the Hyperpolarization-activated Cyclic Nucleotide-modulated (HCN) Ion Channels.
    VanSchouwen B; Akimoto M; Sayadi M; Fogolari F; Melacini G
    J Biol Chem; 2015 Jul; 290(29):17642-17654. PubMed ID: 25944904
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epac1 and cAMP-dependent protein kinase holoenzyme have similar cAMP affinity, but their cAMP domains have distinct structural features and cyclic nucleotide recognition.
    Dao KK; Teigen K; Kopperud R; Hodneland E; Schwede F; Christensen AE; Martinez A; Døskeland SO
    J Biol Chem; 2006 Jul; 281(30):21500-21511. PubMed ID: 16728394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. cAMP regulates DEP domain-mediated binding of the guanine nucleotide exchange factor Epac1 to phosphatidic acid at the plasma membrane.
    Consonni SV; Gloerich M; Spanjaard E; Bos JL
    Proc Natl Acad Sci U S A; 2012 Mar; 109(10):3814-9. PubMed ID: 22343288
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of intracellular cAMP sensor Epac2 activation: cAMP-induced conformational changes identified by amide hydrogen/deuterium exchange mass spectrometry (DXMS).
    Li S; Tsalkova T; White MA; Mei FC; Liu T; Wang D; Woods VL; Cheng X
    J Biol Chem; 2011 May; 286(20):17889-97. PubMed ID: 21454623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ligand-mediated activation of the cAMP-responsive guanine nucleotide exchange factor Epac.
    Rehmann H; Schwede F; Døskeland SO; Wittinghofer A; Bos JL
    J Biol Chem; 2003 Oct; 278(40):38548-56. PubMed ID: 12888551
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mapping allostery through the covariance analysis of NMR chemical shifts.
    Selvaratnam R; Chowdhury S; VanSchouwen B; Melacini G
    Proc Natl Acad Sci U S A; 2011 Apr; 108(15):6133-8. PubMed ID: 21444788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.