These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 22325289)
21. All-atom semiclassical dynamics study of quantum coherence in photosynthetic Fenna-Matthews-Olson complex. Kim HW; Kelly A; Park JW; Rhee YM J Am Chem Soc; 2012 Jul; 134(28):11640-51. PubMed ID: 22708971 [TBL] [Abstract][Full Text] [Related]
22. Excitation transfer pathways in excitonic aggregates revealed by the stochastic Schrödinger equation. Abramavicius V; Abramavicius D J Chem Phys; 2014 Feb; 140(6):065103. PubMed ID: 24527939 [TBL] [Abstract][Full Text] [Related]
23. Testing quantum speedups in exciton transport through a photosynthetic complex using quantum stochastic walks. Dudhe N; Sahoo PK; Benjamin C Phys Chem Chem Phys; 2022 Jan; 24(4):2601-2613. PubMed ID: 35029248 [TBL] [Abstract][Full Text] [Related]
24. Identification and characterization of diverse coherences in the Fenna-Matthews-Olson complex. Thyrhaug E; Tempelaar R; Alcocer MJP; Žídek K; Bína D; Knoester J; Jansen TLC; Zigmantas D Nat Chem; 2018 Jul; 10(7):780-786. PubMed ID: 29785033 [TBL] [Abstract][Full Text] [Related]
25. Effects of Different Quantum Coherence on the Pump-Probe Polarization Anisotropy of Photosynthetic Light-Harvesting Complexes: A Computational Study. Bai S; Song K; Shi Q J Phys Chem Lett; 2015 May; 6(10):1954-60. PubMed ID: 26263276 [TBL] [Abstract][Full Text] [Related]
26. Two-dimensional electronic spectroscopy of bacteriochlorophyll a in solution: Elucidating the coherence dynamics of the Fenna-Matthews-Olson complex using its chromophore as a control. Fransted KA; Caram JR; Hayes D; Engel GS J Chem Phys; 2012 Sep; 137(12):125101. PubMed ID: 23020349 [TBL] [Abstract][Full Text] [Related]
27. Variety, the spice of life and essential for robustness in excitation energy transfer in light-harvesting complexes. Oh SA; Coker DF; Hutchinson DAW Faraday Discuss; 2019 Dec; 221(0):59-76. PubMed ID: 31552998 [TBL] [Abstract][Full Text] [Related]
28. Signatures of correlated excitonic dynamics in two-dimensional spectroscopy of the Fenna-Matthew-Olson photosynthetic complex. Caram JR; Lewis NH; Fidler AF; Engel GS J Chem Phys; 2012 Mar; 136(10):104505. PubMed ID: 22423846 [TBL] [Abstract][Full Text] [Related]
29. On the interpretation of quantum coherent beats observed in two-dimensional electronic spectra of photosynthetic light harvesting complexes. Ishizaki A; Fleming GR J Phys Chem B; 2011 May; 115(19):6227-33. PubMed ID: 21488648 [TBL] [Abstract][Full Text] [Related]
30. Theoretical Study on the Effect of Environment on Excitation Energy Transfer in Photosynthetic Light-Harvesting Systems. Cui X; Yan Y; Wei J J Phys Chem B; 2020 Mar; 124(12):2354-2362. PubMed ID: 32130013 [TBL] [Abstract][Full Text] [Related]
31. Influence of environment induced correlated fluctuations in electronic coupling on coherent excitation energy transfer dynamics in model photosynthetic systems. Huo P; Coker DF J Chem Phys; 2012 Mar; 136(11):115102. PubMed ID: 22443796 [TBL] [Abstract][Full Text] [Related]
32. Robustness of electronic coherence in the Fenna-Matthews-Olson complex to vibronic and structural modifications. Hayes D; Wen J; Panitchayangkoon G; Blankenship RE; Engel GS Faraday Discuss; 2011; 150():459-69; discussion 505-32. PubMed ID: 22457961 [TBL] [Abstract][Full Text] [Related]
33. Impact of environmentally induced fluctuations on quantum mechanically mixed electronic and vibrational pigment states in photosynthetic energy transfer and 2D electronic spectra. Fujihashi Y; Fleming GR; Ishizaki A J Chem Phys; 2015 Jun; 142(21):212403. PubMed ID: 26049423 [TBL] [Abstract][Full Text] [Related]
34. Excitation energy transfer pathways in light-harvesting proteins: Modeling with PyFREC. Kholod Y; DeFilippo M; Reed B; Valdez D; Gillan G; Kosenkov D J Comput Chem; 2018 Mar; 39(8):438-449. PubMed ID: 29243269 [TBL] [Abstract][Full Text] [Related]
35. Coherence and decoherence in biological systems: principles of noise-assisted transport and the origin of long-lived coherences. Chin AW; Huelga SF; Plenio MB Philos Trans A Math Phys Eng Sci; 2012 Aug; 370(1972):3638-57. PubMed ID: 22753818 [TBL] [Abstract][Full Text] [Related]
36. Predicting Mutation-Induced Changes in the Electronic Properties of Photosynthetic Proteins from First Principles: The Fenna-Matthews-Olson Complex Example. Kim Y; Mitchell Z; Lawrence J; Morozov D; Savikhin S; Slipchenko LV J Phys Chem Lett; 2023 Aug; 14(31):7038-7044. PubMed ID: 37524046 [TBL] [Abstract][Full Text] [Related]
37. On uncorrelated inter-monomer Förster energy transfer in Fenna-Matthews-Olson complexes. Kell A; Khmelnitskiy AY; Reinot T; Jankowiak R J R Soc Interface; 2019 Feb; 16(151):20180882. PubMed ID: 30958204 [TBL] [Abstract][Full Text] [Related]
38. Multipartite entanglement in the Fenna-Matthews-Olson (FMO) pigment-protein complex. Thilagam A J Chem Phys; 2012 May; 136(17):175104. PubMed ID: 22583269 [TBL] [Abstract][Full Text] [Related]
39. Quantum coherent energy transfer over varying pathways in single light-harvesting complexes. Hildner R; Brinks D; Nieder JB; Cogdell RJ; van Hulst NF Science; 2013 Jun; 340(6139):1448-51. PubMed ID: 23788794 [TBL] [Abstract][Full Text] [Related]
40. Electronic coherence lifetimes of the Fenna-Matthews-Olson complex and light harvesting complex II. Irgen-Gioro S; Gururangan K; Saer RG; Blankenship RE; Harel E Chem Sci; 2019 Dec; 10(45):10503-10509. PubMed ID: 32055373 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]