These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 22325620)

  • 1. Role of phosphate in the central metabolism of two lactic acid bacteria--a comparative systems biology approach.
    Levering J; Musters MW; Bekker M; Bellomo D; Fiedler T; de Vos WM; Hugenholtz J; Kreikemeyer B; Kummer U; Teusink B
    FEBS J; 2012 Apr; 279(7):1274-90. PubMed ID: 22325620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two different pathways for D-xylose metabolism and the effect of xylose concentration on the yield coefficient of L-lactate in mixed-acid fermentation by the lactic acid bacterium Lactococcus lactis IO-1.
    Tanaka K; Komiyama A; Sonomoto K; Ishizaki A; Hall SJ; Stanbury PF
    Appl Microbiol Biotechnol; 2002 Oct; 60(1-2):160-7. PubMed ID: 12382058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The metabolic pH response in Lactococcus lactis: an integrative experimental and modelling approach.
    Andersen AZ; Carvalho AL; Neves AR; Santos H; Kummer U; Olsen LF
    Comput Biol Chem; 2009 Feb; 33(1):71-83. PubMed ID: 18829387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anaerobic sugar catabolism in Lactococcus lactis: genetic regulation and enzyme control over pathway flux.
    Cocaign-Bousquet M; Even S; Lindley ND; Loubière P
    Appl Microbiol Biotechnol; 2002 Oct; 60(1-2):24-32. PubMed ID: 12382039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of metabolic pathway systems from different data sources.
    Voit EO; Goel G; Chou IC; Fonseca LL
    IET Syst Biol; 2009 Nov; 3(6):513-22. PubMed ID: 19947777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Overview on sugar metabolism and its control in Lactococcus lactis - the input from in vivo NMR.
    Neves AR; Pool WA; Kok J; Kuipers OP; Santos H
    FEMS Microbiol Rev; 2005 Aug; 29(3):531-54. PubMed ID: 15939503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glyceraldehyde-3-phosphate dehydrogenase regulation in Lactococcus lactis ssp. cremoris MG1363 or relA mutant at low pH.
    Mercade M; Cocaign-Bousquet M; Loubière P
    J Appl Microbiol; 2006 Jun; 100(6):1364-72. PubMed ID: 16696685
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improvement in lactic acid production from starch using alpha-amylase-secreting Lactococcus lactis cells adapted to maltose or starch.
    Okano K; Kimura S; Narita J; Fukuda H; Kondo A
    Appl Microbiol Biotechnol; 2007 Jul; 75(5):1007-13. PubMed ID: 17384945
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved homo L-lactic acid fermentation from xylose by abolishment of the phosphoketolase pathway and enhancement of the pentose phosphate pathway in genetically modified xylose-assimilating Lactococcus lactis.
    Shinkawa S; Okano K; Yoshida S; Tanaka T; Ogino C; Fukuda H; Kondo A
    Appl Microbiol Biotechnol; 2011 Sep; 91(6):1537-44. PubMed ID: 21637940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glycolytic oscillations in a model of a lactic acid bacterium metabolism.
    Levering J; Kummer U; Becker K; Sahle S
    Biophys Chem; 2013 Feb; 172():53-60. PubMed ID: 23357412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein costs do not explain evolution of metabolic strategies and regulation of ribosomal content: does protein investment explain an anaerobic bacterial Crabtree effect?
    Goel A; Eckhardt TH; Puri P; de Jong A; Branco Dos Santos F; Giera M; Fusetti F; de Vos WM; Kok J; Poolman B; Molenaar D; Kuipers OP; Teusink B
    Mol Microbiol; 2015 Jul; 97(1):77-92. PubMed ID: 25828364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-fermentation of glucose and citrate by Lactococcus lactis diacetylactis: quantification of the relative metabolic rates by isotopic analysis at natural abundance.
    Goupry S; Gentil E; Akoka S; Robins RJ
    Appl Microbiol Biotechnol; 2003 Oct; 62(5-6):489-97. PubMed ID: 12750852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of glycolysis in Lactococcus lactis: an unfinished systems biological case study.
    Voit EO; Almeida J; Marino S; Lall R; Goel G; Neves AR; Santos H
    Syst Biol (Stevenage); 2006 Jul; 153(4):286-98. PubMed ID: 16986630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The extent of co-metabolism of glucose and galactose by Lactococcus lactis changes with the expression of the lacSZ operon from Streptococcus thermophilus.
    Solem C; Koebmann B; Jensen PR
    Biotechnol Appl Biochem; 2008 May; 50(Pt 1):35-40. PubMed ID: 17822381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of pyruvate metabolism in Lactococcus lactis depends on the imbalance between catabolism and anabolism.
    Garrigues C; Mercade M; Cocaign-Bousquet M; Lindley ND; Loubiere P
    Biotechnol Bioeng; 2001 Jul; 74(2):108-15. PubMed ID: 11369999
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lactococcus lactis as a cell factory: a twofold increase in phosphofructokinase activity results in a proportional increase in specific rates of glucose uptake and lactate formation.
    Papagianni M; Avramidis N
    Enzyme Microb Technol; 2011 Jul; 49(2):197-202. PubMed ID: 22112409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of waste materials for Lactococcus lactis development.
    Rodríguez N; Torrado A; Cortés S; Domínguez JM
    J Sci Food Agric; 2010 Aug; 90(10):1726-34. PubMed ID: 20564439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-scale metabolic model for Lactococcus lactis MG1363 and its application to the analysis of flavor formation.
    Flahaut NA; Wiersma A; van de Bunt B; Martens DE; Schaap PJ; Sijtsma L; Dos Santos VA; de Vos WM
    Appl Microbiol Biotechnol; 2013 Oct; 97(19):8729-39. PubMed ID: 23974365
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calculation of metabolic flow of xylose in Lactococcus lactis.
    Ohara H; Owaki M; Sonomoto K
    J Biosci Bioeng; 2007 Jan; 103(1):92-4. PubMed ID: 17298906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glucose dependence of glycolysis, hexose monophosphate shunt activity, energy status, and the polyol pathway in retinas isolated from normal (nondiabetic) rats.
    Winkler BS; Arnold MJ; Brassell MA; Sliter DR
    Invest Ophthalmol Vis Sci; 1997 Jan; 38(1):62-71. PubMed ID: 9008631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.