These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 22325623)

  • 1. Optimizing the thermoelectric performance of zigzag and chiral carbon nanotubes.
    Tan X; Liu H; Wen Y; Lv H; Pan L; Shi J; Tang X
    Nanoscale Res Lett; 2012 Feb; 7(1):116. PubMed ID: 22325623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermoelectric properties of armchair and zigzag silicene nanoribbons.
    Pan L; Liu HJ; Tan XJ; Lv HY; Shi J; Tang XF; Zheng G
    Phys Chem Chem Phys; 2012 Oct; 14(39):13588-93. PubMed ID: 22965156
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anisotropic thermoelectric properties in hydrogenated nitrogen-doped porous graphene nanosheets.
    Yu X; Liu JH; Zhou WX; Xie ZX; Jia PZ; Deng YX; Cao XH; Fan ZQ; Wu D
    Phys Chem Chem Phys; 2023 Jul; 25(28):19082-19090. PubMed ID: 37427572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced thermoelectric performance of carbon nanotubes at elevated temperature.
    Jiang PH; Liu HJ; Fan DD; Cheng L; Wei J; Zhang J; Liang JH; Shi J
    Phys Chem Chem Phys; 2015 Nov; 17(41):27558-64. PubMed ID: 26426972
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancement of thermoelectric performance by reducing phonon thermal conductance in multiple core-shell nanowires.
    Zhou WX; Chen KQ
    Sci Rep; 2014 Nov; 4():7150. PubMed ID: 25413874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anisotropic thermoelectric behavior in armchair and zigzag mono- and fewlayer MoS2 in thermoelectric generator applications.
    Arab A; Li Q
    Sci Rep; 2015 Sep; 5():13706. PubMed ID: 26333948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular dynamics simulations of adsorption and diffusion of gases in silicon-carbide nanotubes.
    Malek K; Sahimi M
    J Chem Phys; 2010 Jan; 132(1):014310. PubMed ID: 20078164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal transport and thermoelectric properties of beta-graphyne nanostructures.
    Ouyang T; Hu M
    Nanotechnology; 2014 Jun; 25(24):245401. PubMed ID: 24859889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chirality effects in atomic vacancy-limited transport in metallic carbon nanotubes.
    Zeng H; Hu H; Leburton JP
    ACS Nano; 2010 Jan; 4(1):292-6. PubMed ID: 20000404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced thermoelectric figure of merit in thin GaAs nanowires.
    Zou X; Chen X; Huang H; Xu Y; Duan W
    Nanoscale; 2015 May; 7(19):8776-81. PubMed ID: 25905892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synergistic Impacts of Electrolyte Adsorption on the Thermoelectric Properties of Single-Walled Carbon Nanotubes.
    Nakano M; Nakashima T; Kawai T; Nonoguchi Y
    Small; 2017 Aug; 13(29):. PubMed ID: 28597502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced thermoelectric performance of monolayer MoSSe, bilayer MoSSe and graphene/MoSSe heterogeneous nanoribbons.
    Deng S; Li L; Guy OJ; Zhang Y
    Phys Chem Chem Phys; 2019 Aug; 21(33):18161-18169. PubMed ID: 31389445
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Submilligram-scale separation of near-zigzag single-chirality carbon nanotubes by temperature controlling a binary surfactant system.
    Yang D; Li L; Wei X; Wang Y; Zhou W; Kataura H; Xie S; Liu H
    Sci Adv; 2021 Feb; 7(8):. PubMed ID: 33597241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermoelectric properties of graphene nanoribbons, junctions and superlattices.
    Chen Y; Jayasekera T; Calzolari A; Kim KW; Nardelli MB
    J Phys Condens Matter; 2010 Sep; 22(37):372202. PubMed ID: 21403189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced Thermoelectric Performance in Black Phosphorus Nanotubes by Band Modulation through Tailoring Nanotube Chirality.
    Chen X; Duan S; Yi W; Singh DJ; Guo J; Liu X
    Small; 2020 Jul; 16(28):e2001820. PubMed ID: 32521108
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tracing chirality, diameter dependence, and temperature-controlling of single-walled carbon nanotube non-covalent functionalization by biologically compatible peptide: insights from molecular dynamics simulations.
    Tohidifar L; Hadipour NL
    J Mol Model; 2019 Aug; 25(9):274. PubMed ID: 31451939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chirality and length-dependent electron transmission of fullerene-capped chiral carbon nanotubes sandwiched in gold electrodes.
    Kumar A; Sarkar S; Cho D
    Phys Chem Chem Phys; 2024 Jan; 26(4):3474-3481. PubMed ID: 38205801
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The transport properties of silicon and carbon nanotubes at the atomic scale: a first-principles study.
    Ma T; Wen S; Yan L; Wu C; Zhang C; Zhang M; Su Z
    Phys Chem Chem Phys; 2016 Aug; 18(34):23643-50. PubMed ID: 27510551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Macroscopic weavable fibers of carbon nanotubes with giant thermoelectric power factor.
    Komatsu N; Ichinose Y; Dewey OS; Taylor LW; Trafford MA; Yomogida Y; Wehmeyer G; Pasquali M; Yanagi K; Kono J
    Nat Commun; 2021 Aug; 12(1):4931. PubMed ID: 34389723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tuning the carrier concentration using Zintl chemistry in Mg3Sb2, and its implications for thermoelectric figure-of-merit.
    Bhardwaj A; Chauhan NS; Goel S; Singh V; Pulikkotil JJ; Senguttuvan TD; Misra DK
    Phys Chem Chem Phys; 2016 Feb; 18(8):6191-200. PubMed ID: 26852729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.