BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 22325624)

  • 1. Stem sugar accumulation in sweet sorghum - activity and expression of sucrose metabolizing enzymes and sucrose transporters.
    Qazi HA; Paranjpe S; Bhargava S
    J Plant Physiol; 2012 Apr; 169(6):605-13. PubMed ID: 22325624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tonoplast Sugar Transporters (SbTSTs) putatively control sucrose accumulation in sweet sorghum stems.
    Bihmidine S; Julius BT; Dweikat I; Braun DM
    Plant Signal Behav; 2016; 11(1):e1117721. PubMed ID: 26619184
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sucrose accumulation in sweet sorghum stems occurs by apoplasmic phloem unloading and does not involve differential Sucrose transporter expression.
    Bihmidine S; Baker RF; Hoffner C; Braun DM
    BMC Plant Biol; 2015 Jul; 15():186. PubMed ID: 26223524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accumulation of stem sugar and its remobilisation in response to drought stress in a sweet sorghum genotype and its near-isogenic lines carrying different stay-green loci.
    Ghate T; Deshpande S; Bhargava S
    Plant Biol (Stuttg); 2017 May; 19(3):396-405. PubMed ID: 28032438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiology and whole-plant carbon partitioning during stem sugar accumulation in sweet dwarf sorghum.
    Babst BA; Karve A; Sementilli A; Dweikat I; Braun DM
    Planta; 2021 Sep; 254(4):80. PubMed ID: 34546416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of differentially expressed microRNA in the stems and leaves during sugar accumulation in sweet sorghum.
    Yu H; Cong L; Zhu Z; Wang C; Zou J; Tao C; Shi Z; Lu X
    Gene; 2015 Oct; 571(2):221-30. PubMed ID: 26117170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression profiling of sucrose metabolizing genes in Saccharum, Sorghum and their hybrids.
    Ramalashmi K; Prathima PT; Mohanraj K; Nair NV
    Appl Biochem Biotechnol; 2014 Oct; 174(4):1510-1519. PubMed ID: 25119544
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptome and metabolome reveal distinct carbon allocation patterns during internode sugar accumulation in different sorghum genotypes.
    Li Y; Wang W; Feng Y; Tu M; Wittich PE; Bate NJ; Messing J
    Plant Biotechnol J; 2019 Feb; 17(2):472-487. PubMed ID: 30051585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Root lodging is a physical stress that changes gene expression from sucrose accumulation to degradation in sorghum.
    Mizuno H; Kasuga S; Kawahigashi H
    BMC Plant Biol; 2018 Jan; 18(1):2. PubMed ID: 29298675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interconversion of free sugars in relation to activities of enzymes catalyzing synthesis and cleavage of sucrose in growing stem tissues of sorghum.
    Bhatia S; Singh R
    Indian J Exp Biol; 2001 Oct; 39(10):1035-40. PubMed ID: 11883512
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics of biomass partitioning, stem gene expression, cell wall biosynthesis, and sucrose accumulation during development of Sorghum bicolor.
    McKinley B; Rooney W; Wilkerson C; Mullet J
    Plant J; 2016 Nov; 88(4):662-680. PubMed ID: 27411301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new high-throughput assay for determining soluble sugar in sorghum internode-extracted juice.
    Li Y; Mehta R; Messing J
    Planta; 2018 Oct; 248(4):785-793. PubMed ID: 29948129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression analysis of genes associated with sucrose accumulation in sugarcane (Saccharum spp. hybrids) varieties differing in content and time of peak sucrose storage.
    Chandra A; Verma PK; Islam MN; Grisham MP; Jain R; Sharma A; Roopendra K; Singh K; Singh P; Verma I; Solomon S
    Plant Biol (Stuttg); 2015 May; 17(3):608-17. PubMed ID: 25311688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contribution of sucrose transporters to phloem unloading within Sorghum bicolor stem internodes.
    Milne RJ; Reinders A; Ward JM; Offler CE; Patrick JW; Grof CPL
    Plant Signal Behav; 2017 May; 12(5):e1319030. PubMed ID: 28426383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and transcriptomic profiling of genes involved in increasing sugar content during salt stress in sweet sorghum leaves.
    Sui N; Yang Z; Liu M; Wang B
    BMC Genomics; 2015 Jul; 16(1):534. PubMed ID: 26186930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression patterns, activities and carbohydrate-metabolizing regulation of sucrose phosphate synthase, sucrose synthase and neutral invertase in pineapple fruit during development and ripening.
    Zhang XM; Wang W; Du LQ; Xie JH; Yao YL; Sun GM
    Int J Mol Sci; 2012; 13(8):9460-9477. PubMed ID: 22949808
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inter-relationship between growth analysis and carbohydrate contents of sweet sorghum cultivars and lines.
    Almodares A; Taheri R; Adeli S
    J Environ Biol; 2007 Jul; 28(3):527-31. PubMed ID: 18380070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression patterns of genes encoding carbohydrate-metabolizing enzymes and their relationship to grain filling in rice (Oryza sativa L.): comparison of caryopses located at different positions in a panicle.
    Ishimaru T; Hirose T; Matsuda T; Goto A; Takahashi K; Sasaki H; Terao T; Ishii R; Ohsugi R; Yamagishi T
    Plant Cell Physiol; 2005 Apr; 46(4):620-8. PubMed ID: 15701658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Common metabolic networks contribute to carbon sink strength of sorghum internodes: implications for bioenergy improvement.
    Li Y; Tu M; Feng Y; Wang W; Messing J
    Biotechnol Biofuels; 2019; 12():274. PubMed ID: 31832097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new reference genome for Sorghum bicolor reveals high levels of sequence similarity between sweet and grain genotypes: implications for the genetics of sugar metabolism.
    Cooper EA; Brenton ZW; Flinn BS; Jenkins J; Shu S; Flowers D; Luo F; Wang Y; Xia P; Barry K; Daum C; Lipzen A; Yoshinaga Y; Schmutz J; Saski C; Vermerris W; Kresovich S
    BMC Genomics; 2019 May; 20(1):420. PubMed ID: 31133004
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.