BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 22325900)

  • 1. Using cavitation for delignification of wood.
    Baxi PB; Pandit AB
    Bioresour Technol; 2012 Apr; 110():697-700. PubMed ID: 22325900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lignin depolymerization/repolymerization and its critical role for delignification of aspen wood by steam explosion.
    Li J; Henriksson G; Gellerstedt G
    Bioresour Technol; 2007 Nov; 98(16):3061-8. PubMed ID: 17141499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cavitation assisted delignification of wheat straw: a review.
    Iskalieva A; Yimmou BM; Gogate PR; Horvath M; Horvath PG; Csoka L
    Ultrason Sonochem; 2012 Sep; 19(5):984-93. PubMed ID: 22410399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reaction mechanisms in delignification of pine Kraft-AQ pulp with hydrogen peroxide using Mn(IV)-Me4DTNE as catalyst.
    Chen CL; Capanema EA; Gracz HS
    J Agric Food Chem; 2003 Mar; 51(7):1932-41. PubMed ID: 12643654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrodynamic cavitation as a novel approach for delignification of wheat straw for paper manufacturing.
    Badve MP; Gogate PR; Pandit AB; Csoka L
    Ultrason Sonochem; 2014 Jan; 21(1):162-8. PubMed ID: 23968577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reactivity of syringyl and guaiacyl lignin units and delignification kinetics in the kraft pulping of Eucalyptus globulus wood using Py-GC-MS/FID.
    Lourenço A; Gominho J; Marques AV; Pereira H
    Bioresour Technol; 2012 Nov; 123():296-302. PubMed ID: 22940333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A universal kinetic model for characterisation of the effect of chip thickness on kraft pulping.
    Dang VQ; Nguyen KL
    Bioresour Technol; 2008 Mar; 99(5):1486-90. PubMed ID: 17446067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative studies on the delignification of pine kraft-anthraquinone pulp with hydrogen peroxide by binucleus Mn(IV) complex catalysis.
    Chen CL; Capanema EA; Gracz HS
    J Agric Food Chem; 2003 Oct; 51(21):6223-32. PubMed ID: 14518948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural elucidation of lignin polymers of Eucalyptus chips during organosolv pretreatment and extended delignification.
    Wen JL; Sun SL; Yuan TQ; Xu F; Sun RC
    J Agric Food Chem; 2013 Nov; 61(46):11067-75. PubMed ID: 24168231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship between lignin structure and delignification degree in Pinus pinaster kraft pulps.
    Baptista C; Robert D; Duarte AP
    Bioresour Technol; 2008 May; 99(7):2349-56. PubMed ID: 17604620
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of oxygen delignification operating parameters on downstream enzymatic hydrolysis of softwood substrates.
    Charles N; Mansfield SD; Mirochnik O; Duff SJ
    Biotechnol Prog; 2003; 19(5):1606-11. PubMed ID: 14524725
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural differences between the lignin-carbohydrate complexes present in wood and in chemical pulps.
    Lawoko M; Henriksson G; Gellerstedt G
    Biomacromolecules; 2005; 6(6):3467-73. PubMed ID: 16283780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mass balance of pilot-scale pretreatment of sugarcane bagasse by steam explosion followed by alkaline delignification.
    Rocha GJ; Martín C; da Silva VF; Gómez EO; Gonçalves AR
    Bioresour Technol; 2012 May; 111():447-52. PubMed ID: 22391588
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of polyoxometalate catalysts in ionic liquids to enhance the dissolution and delignification of woody biomass.
    Sun N; Jiang X; Maxim ML; Metlen A; Rogers RD
    ChemSusChem; 2011 Jan; 4(1):65-73. PubMed ID: 21226213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microwave-assisted dissolution and delignification of wood in 1-ethyl-3-methylimidazolium acetate.
    Wang H; Maxim ML; Gurau G; Rogers RD
    Bioresour Technol; 2013 May; 136():739-42. PubMed ID: 23566466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimized delignification of wood-derived lignocellulosics for improved enzymatic hydrolysis.
    Cullis IF; Mansfield SD
    Biotechnol Bioeng; 2010 Aug; 106(6):884-93. PubMed ID: 20506220
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of pulp from Salix viminalis energy crops using the FIRSST process.
    Lavoie JM; Capek-Menard E; Gauvin H; Chornet E
    Bioresour Technol; 2010 Jul; 101(13):4940-6. PubMed ID: 19793644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of delignification of forest biomass on enzymatic hydrolysis.
    Yu Z; Jameel H; Chang HM; Park S
    Bioresour Technol; 2011 Oct; 102(19):9083-9. PubMed ID: 21802941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of the papermaking potential of processed Miscanthus × giganteus stalks using alkaline pre-treatment and hydrodynamic cavitation for delignification.
    Tsalagkas D; Börcsök Z; Pásztory Z; Gogate P; Csóka L
    Ultrason Sonochem; 2021 Apr; 72():105462. PubMed ID: 33476967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laccase-initiated cross-linking of lignocellulose fibres using a ultra-filtered lignin isolated from kraft black liquor.
    Elegir G; Bussini D; Antonsson S; Lindström ME; Zoia L
    Appl Microbiol Biotechnol; 2007 Dec; 77(4):809-17. PubMed ID: 17955195
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.