BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 22326142)

  • 21. The Lactobacillus plantarum ftsH gene is a novel member of the CtsR stress response regulon.
    Fiocco D; Collins M; Muscariello L; Hols P; Kleerebezem M; Msadek T; Spano G
    J Bacteriol; 2009 Mar; 191(5):1688-94. PubMed ID: 19074391
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Involvement of pyruvate oxidase activity and acetate production in the survival of Lactobacillus plantarum during the stationary phase of aerobic growth.
    Goffin P; Muscariello L; Lorquet F; Stukkens A; Prozzi D; Sacco M; Kleerebezem M; Hols P
    Appl Environ Microbiol; 2006 Dec; 72(12):7933-40. PubMed ID: 17012588
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Short- and long-term adaptation to ethanol stress and its cross-protective consequences in Lactobacillus plantarum.
    van Bokhorst-van de Veen H; Abee T; Tempelaars M; Bron PA; Kleerebezem M; Marco ML
    Appl Environ Microbiol; 2011 Aug; 77(15):5247-56. PubMed ID: 21705551
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inactivation of the ftsH gene of Lactobacillus plantarum WCFS1: effects on growth, stress tolerance, cell surface properties and biofilm formation.
    Bove P; Capozzi V; Garofalo C; Rieu A; Spano G; Fiocco D
    Microbiol Res; 2012 Apr; 167(4):187-93. PubMed ID: 21795030
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improved adaptation to heat, cold, and solvent tolerance in Lactobacillus plantarum.
    Fiocco D; Capozzi V; Goffin P; Hols P; Spano G
    Appl Microbiol Biotechnol; 2007 Dec; 77(4):909-15. PubMed ID: 17960374
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Regulation of CcpA on the growth and organic acid production characteristics of ruminal Streptococcus bovis at different pH.
    Jin Y; Wang C; Fan Y; Elmhadi M; Zhang Y; Wang H
    BMC Microbiol; 2021 Dec; 21(1):344. PubMed ID: 34911440
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Heterologous expression of the puuE from Oenococcus oeni SD-2a in Lactobacillus plantarum WCFS1 improves ethanol tolerance.
    Yuan L; Zhao H; Liu L; Peng S; Li H; Wang H
    J Basic Microbiol; 2019 Nov; 59(11):1134-1142. PubMed ID: 31549433
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transcriptome analysis of temporal regulation of carbon metabolism by CcpA in Bacillus subtilis reveals additional target genes.
    Lulko AT; Buist G; Kok J; Kuipers OP
    J Mol Microbiol Biotechnol; 2007; 12(1-2):82-95. PubMed ID: 17183215
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Proteomic analysis of log to stationary growth phase Lactobacillus plantarum cells and a 2-DE database.
    Cohen DP; Renes J; Bouwman FG; Zoetendal EG; Mariman E; de Vos WM; Vaughan EE
    Proteomics; 2006 Dec; 6(24):6485-93. PubMed ID: 17115453
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of CcpA against salt stress in Lactiplantibacillus plantarum as assessed by comparative transcriptional analysis.
    Chen C; Huang K; Li X; Tian H; Yu H; Huang J; Yuan H; Zhao S; Shao L
    Appl Microbiol Biotechnol; 2021 May; 105(9):3691-3704. PubMed ID: 33852024
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cold-Stress Response of Probiotic
    Liu S; Ma Y; Zheng Y; Zhao W; Zhao X; Luo T; Zhang J; Yang Z
    J Microbiol Biotechnol; 2020 Feb; 30(2):187-195. PubMed ID: 31752066
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transcriptome signatures of class I and III stress response deregulation in Lactobacillus plantarum reveal pleiotropic adaptation.
    Van Bokhorst-van de Veen H; Bongers RS; Wels M; Bron PA; Kleerebezem M
    Microb Cell Fact; 2013 Nov; 12():112. PubMed ID: 24238744
    [TBL] [Abstract][Full Text] [Related]  

  • 33. AcrR and Rex Control Mannitol and Sorbitol Utilization through Their Cross-Regulation of Aldehyde-Alcohol Dehydrogenase (AdhE) in Lactobacillus plantarum.
    Yang X; Teng K; Su R; Li L; Zhang T; Fan K; Zhang J; Zhong J
    Appl Environ Microbiol; 2019 Feb; 85(4):. PubMed ID: 30530710
    [No Abstract]   [Full Text] [Related]  

  • 34. Genome-based in silico detection of putative manganese transport systems in Lactobacillus plantarum and their genetic analysis.
    Groot MN; Klaassens E; de Vos WM; Delcour J; Hols P; Kleerebezem M
    Microbiology (Reading); 2005 Apr; 151(Pt 4):1229-38. PubMed ID: 15817790
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Assessment of real-time RT-PCR for quantification of Lactobacillus plantarum gene expression during stationary phase and nutrient starvation.
    Marco ML; Kleerebezem M
    J Appl Microbiol; 2008 Feb; 104(2):587-94. PubMed ID: 18081777
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparative proteomic analysis of three Lactobacillus plantarum strains under salt stress by iTRAQ.
    Luo X; Li M; Zhang H; Yan D; Ji S; Wu R; Chen Y
    J Sci Food Agric; 2021 Jun; 101(8):3457-3471. PubMed ID: 33270231
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Viability and Stress Response of Putative Probiotic Lactobacillus plantarum Strains in Honey Environment.
    Landry BKU; François ZN; Wang RY; Taicheng Z; Li Y
    Probiotics Antimicrob Proteins; 2018 Dec; 10(4):629-637. PubMed ID: 29196921
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transcriptional analysis of galactomannooligosaccharides utilization by Lactobacillus plantarum WCFS1.
    Panwar D; Kapoor M
    Food Microbiol; 2020 Apr; 86():103336. PubMed ID: 31703861
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Diversity of stress tolerance in Lactobacillus plantarum, Lactobacillus pentosus and Lactobacillus paraplantarum: A multivariate screening study.
    Parente E; Ciocia F; Ricciardi A; Zotta T; Felis GE; Torriani S
    Int J Food Microbiol; 2010 Dec; 144(2):270-9. PubMed ID: 21035223
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Role of
    Jia FF; Zheng HQ; Sun SR; Pang XH; Liang Y; Shang JC; Zhu ZT; Meng XC
    Biomed Res Int; 2018; 2018():4506829. PubMed ID: 29651434
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.