BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 22326457)

  • 1. Increased survivorship following bacterial infection by the mosquito Aedes aegypti as compared to Anopheles gambiae correlates with increased transcriptional induction of antimicrobial peptides.
    Coggins SA; Estévez-Lao TY; Hillyer JF
    Dev Comp Immunol; 2012 Jul; 37(3-4):390-401. PubMed ID: 22326457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid phagocytosis and melanization of bacteria and Plasmodium sporozoites by hemocytes of the mosquito Aedes aegypti.
    Hillyer JF; Schmidt SL; Christensen BM
    J Parasitol; 2003 Feb; 89(1):62-9. PubMed ID: 12659304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of hemocytes from the mosquitoes Anopheles gambiae and Aedes aegypti.
    Castillo JC; Robertson AE; Strand MR
    Insect Biochem Mol Biol; 2006 Dec; 36(12):891-903. PubMed ID: 17098164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Involvement of the Anopheles gambiae Nimrod gene family in mosquito immune responses.
    Estévez-Lao TY; Hillyer JF
    Insect Biochem Mol Biol; 2014 Jan; 44():12-22. PubMed ID: 24200842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mosquito-Plasmodium interactions in response to immune activation of the vector.
    Lowenberger CA; Kamal S; Chiles J; Paskewitz S; Bulet P; Hoffmann JA; Christensen BM
    Exp Parasitol; 1999 Jan; 91(1):59-69. PubMed ID: 9920043
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Larval nutritional stress affects vector immune traits in adult yellow fever mosquito Aedes aegypti (Stegomyia aegypti).
    Telang A; Qayum AA; Parker A; Sacchetta BR; Byrnes GR
    Med Vet Entomol; 2012 Sep; 26(3):271-81. PubMed ID: 22112201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mosquito phenoloxidase and defensin colocalize in melanization innate immune responses.
    Hillyer JF; Christensen BM
    J Histochem Cytochem; 2005 Jun; 53(6):689-98. PubMed ID: 15928318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phagocytosis in mosquito immune responses.
    Blandin SA; Levashina EA
    Immunol Rev; 2007 Oct; 219():8-16. PubMed ID: 17850478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mosquito hemocytes preferentially aggregate and phagocytose pathogens in the periostial regions of the heart that experience the most hemolymph flow.
    Sigle LT; Hillyer JF
    Dev Comp Immunol; 2016 Feb; 55():90-101. PubMed ID: 26526332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Age-associated mortality in immune challenged mosquitoes (Aedes aegypti) correlates with a decrease in haemocyte numbers.
    Hillyer JF; Schmidt SL; Fuchs JF; Boyle JP; Christensen BM
    Cell Microbiol; 2005 Jan; 7(1):39-51. PubMed ID: 15617522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genomic and evolutionary analyses of Tango transposons in Aedes aegypti, Anopheles gambiae and other mosquito species.
    Coy MR; Tu Z
    Insect Mol Biol; 2007 Aug; 16(4):411-21. PubMed ID: 17506852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aedes FADD: a novel death domain-containing protein required for antibacterial immunity in the yellow fever mosquito, Aedes aegypti.
    Cooper DM; Chamberlain CM; Lowenberger C
    Insect Biochem Mol Biol; 2009 Jan; 39(1):47-54. PubMed ID: 18977438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anopheles gambiae larvae mount stronger immune responses against bacterial infection than adults: evidence of adaptive decoupling in mosquitoes.
    League GP; Estévez-Lao TY; Yan Y; Garcia-Lopez VA; Hillyer JF
    Parasit Vectors; 2017 Aug; 10(1):367. PubMed ID: 28764812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Innate Cellular Immune Responses in Aedes caspius (Diptera: Culicidae) Mosquitoes.
    Soliman DE; Farid HA; Hammad RE; Gad AM; Bartholomay LC
    J Med Entomol; 2016 Mar; 53(2):262-7. PubMed ID: 26792848
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional implications of the peptidoglycan recognition proteins in the immunity of the yellow fever mosquito, Aedes aegypti.
    Wang S; Beerntsen BT
    Insect Mol Biol; 2015 Jun; 24(3):293-310. PubMed ID: 25588548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ovicidal and larvicidal activity against Aedes aegypti and Anopheles gambiae complex mosquitoes of essential oils extracted from three spontaneous plants of Burkina Faso.
    Bassolé IH; Guelbeogo WM; Nébié R; Costantini C; Sagnon N; Kabore ZI; Traoré SA
    Parassitologia; 2003 Mar; 45(1):23-6. PubMed ID: 15270540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Knock-down of REL2, but not defensin A, augments Aedes aegypti susceptibility to Bacillus subtilis and Escherichia coli.
    Magalhaes T; Leandro DC; Ayres CF
    Acta Trop; 2010 Feb; 113(2):167-73. PubMed ID: 19879852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The antibacterial innate immune response by the mosquito Aedes aegypti is mediated by hemocytes and independent of Gram type and pathogenicity.
    Hillyer JF; Schmidt SL; Christensen BM
    Microbes Infect; 2004 Apr; 6(5):448-59. PubMed ID: 15109959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Allatotropin: A pleiotropic neuropeptide that elicits mosquito immune responses.
    Hernández-Martínez S; Sánchez-Zavaleta M; Brito K; Herrera-Ortiz A; Ons S; Noriega FG
    PLoS One; 2017; 12(4):e0175759. PubMed ID: 28426765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential infectivities of o'nyong-nyong and chikungunya virus isolates in Anopheles gambiae and Aedes aegypti mosquitoes.
    Vanlandingham DL; Hong C; Klingler K; Tsetsarkin K; McElroy KL; Powers AM; Lehane MJ; Higgs S
    Am J Trop Med Hyg; 2005 May; 72(5):616-21. PubMed ID: 15891138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.