BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

618 related articles for article (PubMed ID: 22326580)

  • 1. Plasticity of Foxp3(+) T cells reflects promiscuous Foxp3 expression in conventional T cells but not reprogramming of regulatory T cells.
    Miyao T; Floess S; Setoguchi R; Luche H; Fehling HJ; Waldmann H; Huehn J; Hori S
    Immunity; 2012 Feb; 36(2):262-75. PubMed ID: 22326580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lineage stability and phenotypic plasticity of Foxp3⁺ regulatory T cells.
    Hori S
    Immunol Rev; 2014 May; 259(1):159-72. PubMed ID: 24712465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Forced overexpression of either of the two common human Foxp3 isoforms can induce regulatory T cells from CD4(+)CD25(-) cells.
    Aarts-Riemens T; Emmelot ME; Verdonck LF; Mutis T
    Eur J Immunol; 2008 May; 38(5):1381-90. PubMed ID: 18412171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Histone methylation mediates plasticity of human FOXP3(+) regulatory T cells by modulating signature gene expressions.
    He H; Ni B; Tian Y; Tian Z; Chen Y; Liu Z; Yang X; Lv Y; Zhang Y
    Immunology; 2014 Mar; 141(3):362-76. PubMed ID: 24152290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FOXP3+Helios+ Regulatory T Cells, Immune Activation, and Advancing Disease in HIV-Infected Children.
    Khaitan A; Kravietz A; Mwamzuka M; Marshed F; Ilmet T; Said S; Ahmed A; Borkowsky W; Unutmaz D
    J Acquir Immune Defic Syndr; 2016 Aug; 72(5):474-84. PubMed ID: 27003495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulatory T-Cell (Treg) hybridoma as a novel tool to study Foxp3 regulation and Treg fate.
    Sharma R; Sung SS; Ju CY; Deshmukh US; Fu SM; Ju ST
    J Autoimmun; 2011 Sep; 37(2):113-21. PubMed ID: 21621978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Loss of FOXP3 expression in natural human CD4+CD25+ regulatory T cells upon repetitive in vitro stimulation.
    Hoffmann P; Boeld TJ; Eder R; Huehn J; Floess S; Wieczorek G; Olek S; Dietmaier W; Andreesen R; Edinger M
    Eur J Immunol; 2009 Apr; 39(4):1088-97. PubMed ID: 19283780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Natural Treg cells spontaneously differentiate into pathogenic helper cells in lymphopenic conditions.
    Duarte JH; Zelenay S; Bergman ML; Martins AC; Demengeot J
    Eur J Immunol; 2009 Apr; 39(4):948-55. PubMed ID: 19291701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developmental plasticity of Foxp3+ regulatory T cells.
    Hori S
    Curr Opin Immunol; 2010 Oct; 22(5):575-82. PubMed ID: 20829012
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CTLA-4 is required by CD4+CD25+ Treg to control CD4+ T-cell lymphopenia-induced proliferation.
    Sojka DK; Hughson A; Fowell DJ
    Eur J Immunol; 2009 Jun; 39(6):1544-51. PubMed ID: 19462377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. IL-2 promotes the function of memory-like autoregulatory CD8+ T cells but suppresses their development via FoxP3+ Treg cells.
    Shameli A; Yamanouchi J; Tsai S; Yang Y; Clemente-Casares X; Moore A; Serra P; Santamaria P
    Eur J Immunol; 2013 Feb; 43(2):394-403. PubMed ID: 23180662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developmental plasticity of murine and human Foxp3(+) regulatory T cells.
    Liston A; Piccirillo CA
    Adv Immunol; 2013; 119():85-106. PubMed ID: 23886065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glucocorticoid hormone differentially modulates the in vitro expansion and cytokine profile of thymic and splenic Treg cells.
    Pap R; Ugor E; Litvai T; Prenek L; Najbauer J; Németh P; Berki T
    Immunobiology; 2019 Mar; 224(2):285-295. PubMed ID: 30612787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA methylation controls Foxp3 gene expression.
    Polansky JK; Kretschmer K; Freyer J; Floess S; Garbe A; Baron U; Olek S; Hamann A; von Boehmer H; Huehn J
    Eur J Immunol; 2008 Jun; 38(6):1654-63. PubMed ID: 18493985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The CD4(+)CD8(+) and CD4(+) subsets of FOXP3(+) thymocytes differ in their response to growth factor deprivation or stimulation.
    Lehtoviita A; Rossi LH; Kekäläinen E; Sairanen H; Arstila TP
    Scand J Immunol; 2009 Oct; 70(4):377-83. PubMed ID: 19751272
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Induction of Foxp3 demethylation increases regulatory CD4+CD25+ T cells and prevents the occurrence of diabetes in mice.
    Zheng Q; Xu Y; Liu Y; Zhang B; Li X; Guo F; Zhao Y
    J Mol Med (Berl); 2009 Dec; 87(12):1191-205. PubMed ID: 19841877
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation and Functional Specialization of Regulatory T Cells Lead to the Generation of Foxp3 Instability.
    Zhang Z; Zhang W; Guo J; Gu Q; Zhu X; Zhou X
    J Immunol; 2017 Apr; 198(7):2612-2625. PubMed ID: 28228556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rare development of Foxp3+ thymocytes in the CD4+CD8+ subset.
    Lee HM; Hsieh CS
    J Immunol; 2009 Aug; 183(4):2261-6. PubMed ID: 19620303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epigenetic inheritance of DNA methylation limits activation-induced expression of FOXP3 in conventional human CD25-CD4+ T cells.
    Nagar M; Vernitsky H; Cohen Y; Dominissini D; Berkun Y; Rechavi G; Amariglio N; Goldstein I
    Int Immunol; 2008 Aug; 20(8):1041-55. PubMed ID: 18567616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human CD19(+)CD25(high) B regulatory cells suppress proliferation of CD4(+) T cells and enhance Foxp3 and CTLA-4 expression in T-regulatory cells.
    Kessel A; Haj T; Peri R; Snir A; Melamed D; Sabo E; Toubi E
    Autoimmun Rev; 2012 Jul; 11(9):670-7. PubMed ID: 22155204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.