BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 22326773)

  • 1. The thermodynamics of thiol sulfenylation.
    Billiet L; Geerlings P; Messens J; Roos G
    Free Radic Biol Med; 2012 Apr; 52(8):1473-85. PubMed ID: 22326773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How does the protein environment optimize the thermodynamics of thiol sulfenylation? Insights from model systems to QM/MM calculations on human 2-Cys peroxiredoxin.
    Oláh J; van Bergen L; De Proft F; Roos G
    J Biomol Struct Dyn; 2015; 33(3):584-96. PubMed ID: 24762169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thiol and sulfenic acid oxidation of AhpE, the one-cysteine peroxiredoxin from Mycobacterium tuberculosis: kinetics, acidity constants, and conformational dynamics.
    Hugo M; Turell L; Manta B; Botti H; Monteiro G; Netto LE; Alvarez B; Radi R; Trujillo M
    Biochemistry; 2009 Oct; 48(40):9416-26. PubMed ID: 19737009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A complex thiolate switch regulates the Bacillus subtilis organic peroxide sensor OhrR.
    Lee JW; Soonsanga S; Helmann JD
    Proc Natl Acad Sci U S A; 2007 May; 104(21):8743-8. PubMed ID: 17502599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of the DeltapKa between the active site cysteines of thioredoxin and DsbA.
    Carvalho AT; Fernandes PA; Ramos MJ
    J Comput Chem; 2006 Jun; 27(8):966-75. PubMed ID: 16586531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thiolation and nitrosation of cysteines in biological fluids and cells.
    Di Simplicio P; Franconi F; Frosalí S; Di Giuseppe D
    Amino Acids; 2003 Dec; 25(3-4):323-39. PubMed ID: 14661094
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From thiol to sulfonic acid: modeling the oxidation pathway of protein thiols by hydrogen peroxide.
    van Bergen LA; Roos G; De Proft F
    J Phys Chem A; 2014 Aug; 118(31):6078-84. PubMed ID: 25036614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stabilization of the catalytic thiolate in a mammalian glutaredoxin: structure, dynamics and electrostatics of reduced pig glutaredoxin and its mutants.
    Foloppe N; Nilsson L
    J Mol Biol; 2007 Sep; 372(3):798-816. PubMed ID: 17681533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein-thiol substitution or protein dethiolation by thiol/disulfide exchange reactions: the albumin model.
    Summa D; Spiga O; Bernini A; Venditti V; Priora R; Frosali S; Margaritis A; Di Giuseppe D; Niccolai N; Di Simplicio P
    Proteins; 2007 Nov; 69(2):369-78. PubMed ID: 17607746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A conserved cis-proline precludes metal binding by the active site thiolates in members of the thioredoxin family of proteins.
    Su D; Berndt C; Fomenko DE; Holmgren A; Gladyshev VN
    Biochemistry; 2007 Jun; 46(23):6903-10. PubMed ID: 17503777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of buried charged groups on cysteine thiol ionization and reactivity in Escherichia coli thioredoxin: structural and functional characterization of mutants of Asp 26 and Lys 57.
    Dyson HJ; Jeng MF; Tennant LL; Slaby I; Lindell M; Cui DS; Kuprin S; Holmgren A
    Biochemistry; 1997 Mar; 36(9):2622-36. PubMed ID: 9054569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sulfenic acid formation in human serum albumin by hydrogen peroxide and peroxynitrite.
    Carballal S; Radi R; Kirk MC; Barnes S; Freeman BA; Alvarez B
    Biochemistry; 2003 Aug; 42(33):9906-14. PubMed ID: 12924939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mining for protein S-sulfenylation in
    Huang J; Willems P; Wei B; Tian C; Ferreira RB; Bodra N; Martínez Gache SA; Wahni K; Liu K; Vertommen D; Gevaert K; Carroll KS; Van Montagu M; Yang J; Van Breusegem F; Messens J
    Proc Natl Acad Sci U S A; 2019 Oct; 116(42):21256-21261. PubMed ID: 31578252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Factors affecting protein thiol reactivity and specificity in peroxide reduction.
    Ferrer-Sueta G; Manta B; Botti H; Radi R; Trujillo M; Denicola A
    Chem Res Toxicol; 2011 Apr; 24(4):434-50. PubMed ID: 21391663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dynamics of a biophysical model for beta2-adrenergic and G protein-coupled receptor activation.
    Rubenstein LA; Zauhar RJ; Lanzara RG
    J Mol Graph Model; 2006 Dec; 25(4):396-409. PubMed ID: 16574446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Derivatives of cysteine related to the thiosulfate metabolism of sulfur bacteria by the multi-enzyme complex "Sox"-studied by B3LYP-PCM and G3X(MP2) calculations.
    Steudel R; Steudel Y
    Phys Chem Chem Phys; 2010 Jan; 12(3):630-44. PubMed ID: 20066349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the yeast peroxiredoxin Ahp1 in its reduced active and overoxidized inactive forms using NMR.
    Trivelli X; Krimm I; Ebel C; Verdoucq L; Prouzet-Mauléon V; Chartier Y; Tsan P; Lauquin G; Meyer Y; Lancelin JM
    Biochemistry; 2003 Dec; 42(48):14139-49. PubMed ID: 14640681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subdivision of the bacterioferritin comigratory protein family of bacterial peroxiredoxins based on catalytic activity.
    Clarke DJ; Ortega XP; Mackay CL; Valvano MA; Govan JR; Campopiano DJ; Langridge-Smith P; Brown AR
    Biochemistry; 2010 Feb; 49(6):1319-30. PubMed ID: 20078128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic and chemical competence of regulation of cdc25 phosphatase by oxidation/reduction.
    Sohn J; Rudolph J
    Biochemistry; 2003 Sep; 42(34):10060-70. PubMed ID: 12939134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Redox properties and evolution of human glutaredoxins.
    Sagemark J; Elgán TH; Bürglin TR; Johansson C; Holmgren A; Berndt KD
    Proteins; 2007 Sep; 68(4):879-92. PubMed ID: 17546662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.