BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 22326956)

  • 1. Modulation of noncanonical TGF-β signaling prevents cleft palate in Tgfbr2 mutant mice.
    Iwata J; Hacia JG; Suzuki A; Sanchez-Lara PA; Urata M; Chai Y
    J Clin Invest; 2012 Mar; 122(3):873-85. PubMed ID: 22326956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of lipid metabolic defects rescues cleft palate in Tgfbr2 mutant mice.
    Iwata J; Suzuki A; Pelikan RC; Ho TV; Sanchez-Lara PA; Chai Y
    Hum Mol Genet; 2014 Jan; 23(1):182-93. PubMed ID: 23975680
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TGF-β-activated kinase 1 (Tak1) mediates agonist-induced Smad activation and linker region phosphorylation in embryonic craniofacial neural crest-derived cells.
    Yumoto K; Thomas PS; Lane J; Matsuzaki K; Inagaki M; Ninomiya-Tsuji J; Scott GJ; Ray MK; Ishii M; Maxson R; Mishina Y; Kaartinen V
    J Biol Chem; 2013 May; 288(19):13467-80. PubMed ID: 23546880
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CTGF mediates Smad-dependent transforming growth factor β signaling to regulate mesenchymal cell proliferation during palate development.
    Parada C; Li J; Iwata J; Suzuki A; Chai Y
    Mol Cell Biol; 2013 Sep; 33(17):3482-93. PubMed ID: 23816882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell autonomous requirement for Tgfbr2 in the disappearance of medial edge epithelium during palatal fusion.
    Xu X; Han J; Ito Y; Bringas P; Urata MM; Chai Y
    Dev Biol; 2006 Sep; 297(1):238-48. PubMed ID: 16780827
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Angiotensin II-dependent TGF-β signaling contributes to Loeys-Dietz syndrome vascular pathogenesis.
    Gallo EM; Loch DC; Habashi JP; Calderon JF; Chen Y; Bedja D; van Erp C; Gerber EE; Parker SJ; Sauls K; Judge DP; Cooke SK; Lindsay ME; Rouf R; Myers L; ap Rhys CM; Kent KC; Norris RA; Huso DL; Dietz HC
    J Clin Invest; 2014 Jan; 124(1):448-60. PubMed ID: 24355923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of candidate downstream targets of TGFβ signaling during palate development by genome-wide transcript profiling.
    Pelikan RC; Iwata J; Suzuki A; Chai Y; Hacia JG
    J Cell Biochem; 2013 Apr; 114(4):796-807. PubMed ID: 23060211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fibroblast growth factor 9 (FGF9)-pituitary homeobox 2 (PITX2) pathway mediates transforming growth factor β (TGFβ) signaling to regulate cell proliferation in palatal mesenchyme during mouse palatogenesis.
    Iwata J; Tung L; Urata M; Hacia JG; Pelikan R; Suzuki A; Ramenzoni L; Chaudhry O; Parada C; Sanchez-Lara PA; Chai Y
    J Biol Chem; 2012 Jan; 287(4):2353-63. PubMed ID: 22123828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epithelial and ectomesenchymal role of the type I TGF-beta receptor ALK5 during facial morphogenesis and palatal fusion.
    Dudas M; Kim J; Li WY; Nagy A; Larsson J; Karlsson S; Chai Y; Kaartinen V
    Dev Biol; 2006 Aug; 296(2):298-314. PubMed ID: 16806156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conditional inactivation of Tgfbr2 in cranial neural crest causes cleft palate and calvaria defects.
    Ito Y; Yeo JY; Chytil A; Han J; Bringas P; Nakajima A; Shuler CF; Moses HL; Chai Y
    Development; 2003 Nov; 130(21):5269-80. PubMed ID: 12975342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integration of comprehensive 3D microCT and signaling analysis reveals differential regulatory mechanisms of craniofacial bone development.
    Ho TV; Iwata J; Ho HA; Grimes WC; Park S; Sanchez-Lara PA; Chai Y
    Dev Biol; 2015 Apr; 400(2):180-90. PubMed ID: 25722190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Impact of Genetic Variability of TGF-Beta Signaling Biomarkers in Major Craniofacial Syndromes.
    Yapijakis C; Davaria S; Gintoni I; Chrousos GP
    Adv Exp Med Biol; 2023; 1423():187-191. PubMed ID: 37525043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mice with Tak1 deficiency in neural crest lineage exhibit cleft palate associated with abnormal tongue development.
    Song Z; Liu C; Iwata J; Gu S; Suzuki A; Sun C; He W; Shu R; Li L; Chai Y; Chen Y
    J Biol Chem; 2013 Apr; 288(15):10440-50. PubMed ID: 23460641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TGF-beta type I receptor Alk5 regulates tooth initiation and mandible patterning in a type II receptor-independent manner.
    Zhao H; Oka K; Bringas P; Kaartinen V; Chai Y
    Dev Biol; 2008 Aug; 320(1):19-29. PubMed ID: 18572160
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Noncanonical transforming growth factor β (TGFβ) signaling in cranial neural crest cells causes tongue muscle developmental defects.
    Iwata J; Suzuki A; Pelikan RC; Ho TV; Chai Y
    J Biol Chem; 2013 Oct; 288(41):29760-70. PubMed ID: 23950180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TGFβ regulates epithelial-mesenchymal interactions through WNT signaling activity to control muscle development in the soft palate.
    Iwata J; Suzuki A; Yokota T; Ho TV; Pelikan R; Urata M; Sanchez-Lara PA; Chai Y
    Development; 2014 Feb; 141(4):909-17. PubMed ID: 24496627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PDGF receptor-α promotes TGF-β signaling in hepatic stellate cells via transcriptional and posttranscriptional regulation of TGF-β receptors.
    Liu C; Li J; Xiang X; Guo L; Tu K; Liu Q; Shah VH; Kang N
    Am J Physiol Gastrointest Liver Physiol; 2014 Oct; 307(7):G749-59. PubMed ID: 25169976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Duplication of the TGFBR1 gene causes features of Loeys-Dietz syndrome.
    Breckpot J; Budts W; De Zegher F; Vermeesch JR; Devriendt K
    Eur J Med Genet; 2010; 53(6):408-10. PubMed ID: 20813212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transforming growth factor-beta regulates basal transcriptional regulatory machinery to control cell proliferation and differentiation in cranial neural crest-derived osteoprogenitor cells.
    Iwata J; Hosokawa R; Sanchez-Lara PA; Urata M; Slavkin H; Chai Y
    J Biol Chem; 2010 Feb; 285(7):4975-82. PubMed ID: 19959467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inactivation of TGF-beta signaling in hepatocytes results in an increased proliferative response after partial hepatectomy.
    Romero-Gallo J; Sozmen EG; Chytil A; Russell WE; Whitehead R; Parks WT; Holdren MS; Her MF; Gautam S; Magnuson M; Moses HL; Grady WM
    Oncogene; 2005 Apr; 24(18):3028-41. PubMed ID: 15735717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.