These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 22326995)

  • 1. Micromechanics of annulus-end plate integration in the intervertebral disc.
    Rodrigues SA; Wade KR; Thambyah A; Broom ND
    Spine J; 2012 Feb; 12(2):143-50. PubMed ID: 22326995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How maturity influences annulus-endplate integration in the ovine intervertebral disc: a micro- and ultra-structural study.
    Rodrigues SA; Thambyah A; Broom ND
    J Anat; 2017 Jan; 230(1):152-164. PubMed ID: 27535364
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New evidence for structural integration across the cartilage-vertebral endplate junction and its relation to herniation.
    Sapiee NH; Thambyah A; Robertson PA; Broom ND
    Spine J; 2019 Mar; 19(3):532-544. PubMed ID: 30176283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A multiscale structural investigation of the annulus-endplate anchorage system and its mechanisms of failure.
    Rodrigues SA; Thambyah A; Broom ND
    Spine J; 2015 Mar; 15(3):405-16. PubMed ID: 25554584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anchorage of annulus fibrosus within the vertebral endplate with reference to disc herniation.
    Junhui L; Zhengfeng M; Zhi S; Mamuti M; Lu H; Shunwu F; Fengdong Z
    Microsc Res Tech; 2015 Sep; 78(9):754-60. PubMed ID: 26178646
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ISSLS prize winner: microstructure and mechanical disruption of the lumbar disc annulus: part I: a microscopic investigation of the translamellar bridging network.
    Schollum ML; Robertson PA; Broom ND
    Spine (Phila Pa 1976); 2008 Dec; 33(25):2702-10. PubMed ID: 19002075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional architecture of lumbar intervertebral discs.
    Inoue H
    Spine (Phila Pa 1976); 1981; 6(2):139-46. PubMed ID: 7280814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of cell death and vertebral end plate bone mineral density in the annulus of the aging sand rat.
    Gruber HE; Gordon B; Norton HJ; Kilburn J; Williams C; Zinchenko N; Heath J; Ingram J; Hanley EN
    Spine J; 2008; 8(3):475-81. PubMed ID: 18455112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influences of disc degeneration and bone mineral density on the structural properties of lumbar end plates.
    Hou Y; Yuan W
    Spine J; 2012 Mar; 12(3):249-56. PubMed ID: 22366078
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mineralization and collagen orientation throughout aging at the vertebral endplate in the human lumbar spine.
    Paietta RC; Burger EL; Ferguson VL
    J Struct Biol; 2013 Nov; 184(2):310-20. PubMed ID: 23999190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. "Surprise" Loading in Flexion Increases the Risk of Disc Herniation Due to Annulus-Endplate Junction Failure: A Mechanical and Microstructural Investigation.
    Wade KR; Robertson PA; Thambyah A; Broom ND
    Spine (Phila Pa 1976); 2015 Jun; 40(12):891-901. PubMed ID: 25803222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ISSLS prize winner: microstructure and mechanical disruption of the lumbar disc annulus: part II: how the annulus fails under hydrostatic pressure.
    Veres SP; Robertson PA; Broom ND
    Spine (Phila Pa 1976); 2008 Dec; 33(25):2711-20. PubMed ID: 19002077
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the extent and nature of nucleus-annulus integration.
    Wade KR; Robertson PA; Broom ND
    Spine (Phila Pa 1976); 2012 Oct; 37(21):1826-33. PubMed ID: 22695276
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteoglycans of human infant intervertebral disc. Electron microscopic and biochemical studies.
    Buckwalter JA; Pedrini-Mille A; Pedrini V; Tudisco C
    J Bone Joint Surg Am; 1985 Feb; 67(2):284-94. PubMed ID: 3968121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sagittal Alignment With Downward Slope of the Lower Lumbar Motion Segment Influences Its Modes of Failure in Direct Compression: A Mechanical and Microstructural Investigation.
    Sapiee NH; Thambyah A; Robertson PA; Broom ND
    Spine (Phila Pa 1976); 2019 Aug; 44(16):1118-1128. PubMed ID: 30817724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Anatomical background of low back pain: variability and degeneration of the lumbar spinal canal and intervertebral disc].
    van Roy P; Barbaix E; Clarijs JP; Mense S
    Schmerz; 2001 Dec; 15(6):418-24. PubMed ID: 11793145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional architecture and development of lumber intervertebral discs.
    Hashizume H
    Acta Med Okayama; 1980 Nov; 34(5):301-14. PubMed ID: 6449129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of implant size and device keel on vertebral compression properties in lumbar total disc replacement.
    Auerbach JD; Ballester CM; Hammond F; Carine ET; Balderston RA; Elliott DM
    Spine J; 2010 Apr; 10(4):333-40. PubMed ID: 20362251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stress analysis of the interface between cervical vertebrae end plates and the Bryan, Prestige LP, and ProDisc-C cervical disc prostheses: an in vivo image-based finite element study.
    Lin CY; Kang H; Rouleau JP; Hollister SJ; Marca FL
    Spine (Phila Pa 1976); 2009 Jul; 34(15):1554-60. PubMed ID: 19564765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of laser irradiation on collagen organization in chemically induced degenerative annulus fibrosus of lumbar intervertebral disc.
    Ignatieva N; Zakharkina O; Andreeva I; Sobol E; Kamensky V; Lunin V
    Lasers Surg Med; 2008 Aug; 40(6):422-32. PubMed ID: 18649381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.