BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 22327242)

  • 1. Mapping QTL, epistasis and genotype × environment interaction of antioxidant activity, chlorophyll content and head formation in domesticated lettuce (Lactuca sativa).
    Hayashi E; You Y; Lewis R; Calderon MC; Wan G; Still DW
    Theor Appl Genet; 2012 May; 124(8):1487-502. PubMed ID: 22327242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. QTL and epistatic interaction underlying leaf chlorophyll and H2O2 content variation in rice (Oryza sativa L.).
    Yang QH; Lu W; Hu ML; Wang CM; Zhang RX; Yano M; Wan JM
    Yi Chuan Xue Bao; 2003 Mar; 30(3):245-50. PubMed ID: 12812090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of quantitative trait loci affecting chlorophyll content of rice leaves in a double haploid population and two backcross populations.
    Jiang G; Zeng J; He Y
    Gene; 2014 Feb; 536(2):287-95. PubMed ID: 24361205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative trait loci associated with seed and seedling traits in Lactuca.
    Argyris J; Truco MJ; Ochoa O; Knapp SJ; Still DW; Lenssen GM; Schut JW; Michelmore RW; Bradford KJ
    Theor Appl Genet; 2005 Nov; 111(7):1365-76. PubMed ID: 16177902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of stacked quantitative resistances to downy mildew in lettuce do not simply add up.
    den Boer E; Pelgrom KT; Zhang NW; Visser RG; Niks RE; Jeuken MJ
    Theor Appl Genet; 2014 Aug; 127(8):1805-16. PubMed ID: 24927822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-Wide Detection of Major and Epistatic Effect QTLs for Seed Protein and Oil Content in Soybean Under Multiple Environments Using High-Density Bin Map.
    Karikari B; Li S; Bhat JA; Cao Y; Kong J; Yang J; Gai J; Zhao T
    Int J Mol Sci; 2019 Feb; 20(4):. PubMed ID: 30813455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. QTL in mega-environments: I. Universal and specific seed yield QTL detected in a population derived from a cross of high-yielding adapted x high-yielding exotic soybean lines.
    Palomeque L; Li-Jun L; Li W; Hedges B; Cober ER; Rajcan I
    Theor Appl Genet; 2009 Aug; 119(3):417-27. PubMed ID: 19462148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular Mapping of Water-Stress Responsive Genomic Loci in Lettuce (
    Kumar P; Eriksen RL; Simko I; Mou B
    Front Genet; 2021; 12():634554. PubMed ID: 33679897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient QTL detection for nonhost resistance in wild lettuce: backcross inbred lines versus F(2) population.
    Jeuken MJ; Pelgrom K; Stam P; Lindhout P
    Theor Appl Genet; 2008 Apr; 116(6):845-57. PubMed ID: 18251002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A gene encoding an abscisic acid biosynthetic enzyme (LsNCED4) collocates with the high temperature germination locus Htg6.1 in lettuce (Lactuca sp.).
    Argyris J; Truco MJ; Ochoa O; McHale L; Dahal P; Van Deynze A; Michelmore RW; Bradford KJ
    Theor Appl Genet; 2011 Jan; 122(1):95-108. PubMed ID: 20703871
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and validation of QTL and their associated genes for pre-emergent metribuzin tolerance in hexaploid wheat (Triticum aestivum L.).
    Bhoite R; Onyemaobi I; Si P; Siddique KHM; Yan G
    BMC Genet; 2018 Nov; 19(1):102. PubMed ID: 30419811
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mapping QTLs associated with agronomic and physiological traits under terminal drought and heat stress conditions in wheat (Triticum aestivum L.).
    Tahmasebi S; Heidari B; Pakniyat H; McIntyre CL
    Genome; 2017 Jan; 60(1):26-45. PubMed ID: 27996306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping and identification of genetic loci affecting earliness of bolting and flowering in lettuce.
    Rosental L; Still DW; You Y; Hayes RJ; Simko I
    Theor Appl Genet; 2021 Oct; 134(10):3319-3337. PubMed ID: 34196730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. QTL mapping in new Arabidopsis thaliana advanced intercross-recombinant inbred lines.
    Balasubramanian S; Schwartz C; Singh A; Warthmann N; Kim MC; Maloof JN; Loudet O; Trainer GT; Dabi T; Borevitz JO; Chory J; Weigel D
    PLoS One; 2009; 4(2):e4318. PubMed ID: 19183806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic architecture of tipburn resistance in lettuce.
    Macias-González M; Truco MJ; Bertier LD; Jenni S; Simko I; Hayes RJ; Michelmore RW
    Theor Appl Genet; 2019 Aug; 132(8):2209-2222. PubMed ID: 31055612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A two-step approach to map quantitative trait loci for meat quality in connected porcine F(2) crosses considering main and epistatic effects.
    Stratz P; Baes C; Rückert C; Preuss S; Bennewitz J
    Anim Genet; 2013 Feb; 44(1):14-23. PubMed ID: 22509991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of QTLs with main, epistatic and QTL by environment interaction effects for seed shape and hundred-seed weight in soybean across multiple years.
    Liang H; Xu L; Yu Y; Yang H; Dong W; Zhang H
    J Genet; 2016 Jun; 95(2):475-7. PubMed ID: 27350695
    [No Abstract]   [Full Text] [Related]  

  • 18. High-density QTL mapping of leaf-related traits and chlorophyll content in three soybean RIL populations.
    Yu K; Wang J; Sun C; Liu X; Xu H; Yang Y; Dong L; Zhang D
    BMC Plant Biol; 2020 Oct; 20(1):470. PubMed ID: 33050902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Do large effect QTL fractionate? A case study at the maize domestication QTL teosinte branched1.
    Studer AJ; Doebley JF
    Genetics; 2011 Jul; 188(3):673-81. PubMed ID: 21515578
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The genetic basis of water-use efficiency and yield in lettuce.
    Damerum A; Smith HK; Clarkson G; Truco MJ; Michelmore RW; Taylor G
    BMC Plant Biol; 2021 May; 21(1):237. PubMed ID: 34044761
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.