These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
238 related articles for article (PubMed ID: 22327269)
1. Phototrophic phylotypes dominate mesothermal microbial mats associated with hot springs in Yellowstone National Park. Ross KA; Feazel LM; Robertson CE; Fathepure BZ; Wright KE; Turk-Macleod RM; Chan MM; Held NL; Spear JR; Pace NR Microb Ecol; 2012 Jul; 64(1):162-70. PubMed ID: 22327269 [TBL] [Abstract][Full Text] [Related]
2. Vertical Distribution and Diversity of Phototrophic Bacteria within a Hot Spring Microbial Mat (Nakabusa Hot Springs, Japan). Martinez JN; Nishihara A; Lichtenberg M; Trampe E; Kawai S; Tank M; Kühl M; Hanada S; Thiel V Microbes Environ; 2019 Dec; 34(4):374-387. PubMed ID: 31685759 [TBL] [Abstract][Full Text] [Related]
3. Biodiversity of the microbial mat of the Garga hot spring. Rozanov AS; Bryanskaya AV; Ivanisenko TV; Malup TK; Peltek SE BMC Evol Biol; 2017 Dec; 17(Suppl 2):254. PubMed ID: 29297382 [TBL] [Abstract][Full Text] [Related]
4. Diversity of phototrophic bacteria in microbial mats from Arctic hot springs (Greenland). Roeselers G; Norris TB; Castenholz RW; Rysgaard S; Glud RN; Kühl M; Muyzer G Environ Microbiol; 2007 Jan; 9(1):26-38. PubMed ID: 17227409 [TBL] [Abstract][Full Text] [Related]
6. Linking microbial oxidation of arsenic with detection and phylogenetic analysis of arsenite oxidase genes in diverse geothermal environments. Hamamura N; Macur RE; Korf S; Ackerman G; Taylor WP; Kozubal M; Reysenbach AL; Inskeep WP Environ Microbiol; 2009 Feb; 11(2):421-31. PubMed ID: 19196273 [TBL] [Abstract][Full Text] [Related]
7. Thermophilic bacterial communities inhabiting the microbial mats of "indifferent" and chalybeate (iron-rich) thermal springs: Diversity and biotechnological analysis. Selvarajan R; Sibanda T; Tekere M Microbiologyopen; 2018 Apr; 7(2):e00560. PubMed ID: 29243409 [TBL] [Abstract][Full Text] [Related]
8. Domination of Filamentous Anoxygenic Phototrophic Bacteria and Prediction of Metabolic Pathways in Microbial Mats from the Hot Springs of Al Aridhah. Yasir M; Qureshi AK; Srinivasan S; Ullah R; Bibi F; Rehan M; Khan SB; Azhar EI Folia Biol (Praha); 2020; 66(1):24-35. PubMed ID: 32512656 [TBL] [Abstract][Full Text] [Related]
9. Temperature and Geographic Location Impact the Distribution and Diversity of Photoautotrophic Gene Variants in Alkaline Yellowstone Hot Springs. Bennett AC; Murugapiran SK; Kees ED; Sauer HM; Hamilton TL Microbiol Spectr; 2022 Jun; 10(3):e0146521. PubMed ID: 35575591 [TBL] [Abstract][Full Text] [Related]
10. Metatranscriptomic analyses of chlorophototrophs of a hot-spring microbial mat. Liu Z; Klatt CG; Wood JM; Rusch DB; Ludwig M; Wittekindt N; Tomsho LP; Schuster SC; Ward DM; Bryant DA ISME J; 2011 Aug; 5(8):1279-90. PubMed ID: 21697962 [TBL] [Abstract][Full Text] [Related]
11. Bacteria and Archaea diversity within the hot springs of Lake Magadi and Little Magadi in Kenya. Kambura AK; Mwirichia RK; Kasili RW; Karanja EN; Makonde HM; Boga HI BMC Microbiol; 2016 Jul; 16(1):136. PubMed ID: 27388368 [TBL] [Abstract][Full Text] [Related]
12. Bacterial community composition in thermophilic microbial mats from five hot springs in central Tibet. Lau MC; Aitchison JC; Pointing SB Extremophiles; 2009 Jan; 13(1):139-49. PubMed ID: 19023516 [TBL] [Abstract][Full Text] [Related]
13. Bacterial communities of the microbial mats of Chokrak sulfide springs. Burganskaya EI; Bryantseva IA; Krutkina MS; Grouzdev DS; Gorlenko VM Arch Microbiol; 2019 Aug; 201(6):795-805. PubMed ID: 30868175 [TBL] [Abstract][Full Text] [Related]
14. An analysis of geothermal and carbonic springs in the western United States sustained by deep fluid inputs. Colman DR; Garcia JR; Crossey LJ; Karlstrom K; Jackson-Weaver O; Takacs-Vesbach C Geobiology; 2014 Jan; 12(1):83-98. PubMed ID: 24286205 [TBL] [Abstract][Full Text] [Related]
15. Temperature impacts community structure and function of phototrophic Chloroflexi and Cyanobacteria in two alkaline hot springs in Yellowstone National Park. Bennett AC; Murugapiran SK; Hamilton TL Environ Microbiol Rep; 2020 Oct; 12(5):503-513. PubMed ID: 32613733 [TBL] [Abstract][Full Text] [Related]
16. [Dominant phylotypes in the 16S rRNA gene clone libraries from bacterial mats of the Uzon caldera (Kamchatka, Russia) hydrothermal springs]. Akimov VN; Podosokorskaia OA; Shliapnikov MG; Gal'chenko VF Mikrobiologiia; 2013; 82(6):707-14. PubMed ID: 25509409 [TBL] [Abstract][Full Text] [Related]
17. Formation of multilayered photosynthetic biofilms in an alkaline thermal spring in Yellowstone National Park, Wyoming. Boomer SM; Noll KL; Geesey GG; Dutton BE Appl Environ Microbiol; 2009 Apr; 75(8):2464-75. PubMed ID: 19218404 [TBL] [Abstract][Full Text] [Related]
18. Relationship between Microorganisms Inhabiting Alkaline Siliceous Hot Spring Mat Communities and Overflowing Water. Becraft ED; Jackson BD; Nowack S; Klapper I; Ward DM Appl Environ Microbiol; 2020 Nov; 86(23):. PubMed ID: 32978131 [TBL] [Abstract][Full Text] [Related]
19. Isolation and distribution of a novel iron-oxidizing crenarchaeon from acidic geothermal springs in Yellowstone National Park. Kozubal M; Macur RE; Korf S; Taylor WP; Ackerman GG; Nagy A; Inskeep WP Appl Environ Microbiol; 2008 Feb; 74(4):942-9. PubMed ID: 18083851 [TBL] [Abstract][Full Text] [Related]
20. Novel archaea and bacteria dominate stable microbial communities in North America's Largest Hot Spring. Wilson MS; Siering PL; White CL; Hauser ME; Bartles AN Microb Ecol; 2008 Aug; 56(2):292-305. PubMed ID: 18080156 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]