These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 22327678)

  • 1. Electrophysiological monitoring of cochlear function as a non-invasive method to assess intracranial pressure variations.
    Sakka L; Thalamy A; Giraudet F; Hassoun T; Avan P; Chazal J
    Acta Neurochir Suppl; 2012; 114():131-4. PubMed ID: 22327678
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transmission of infrasonic pressure waves from cerebrospinal to intralabyrinthine fluids through the human cochlear aqueduct: Non-invasive measurements with otoacoustic emissions.
    Traboulsi R; Avan P
    Hear Res; 2007 Nov; 233(1-2):30-9. PubMed ID: 17716844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Non-invasive monitoring of intracranial pressure changes through the ear].
    Büki B; Avan P; Lemaire JJ; Dordain M; Chazal J; Otto R
    Orv Hetil; 1997 Aug; 138(32):2009-12. PubMed ID: 9297171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distortion Product Otoacoustic Emissions and Intracranial Pressure During CSF Infusion Testing.
    Williams MA; Malm J; Eklund A; Horton NJ; Voss SE
    Aerosp Med Hum Perform; 2016; 87(10):844-851. PubMed ID: 27662346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distortion-product otoacoustic emissions and cochlear microphonics: relationships in patients with and without endolymphatic hydrops.
    Fetterman BL
    Laryngoscope; 2001 Jun; 111(6):946-54. PubMed ID: 11404602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Use of acoustic distortion products in clinical diagnosis. The site of origin of otoacoustic emissions in the inner ear].
    Plinkert PK; Harris FP; Probst R
    HNO; 1993 Jul; 41(7):339-44. PubMed ID: 8376180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Contralateral suppression of latency during distortion product otoacoustic emissions detection in guinea pigs].
    Kong W; Yang Y; Zhang W
    Zhonghua Er Bi Yan Hou Ke Za Zhi; 2001 Aug; 36(4):271-4. PubMed ID: 12761994
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Otoacoustic emissions without somatic motility: can stereocilia mechanics drive the mammalian cochlea?
    Liberman MC; Zuo J; Guinan JJ
    J Acoust Soc Am; 2004 Sep; 116(3):1649-55. PubMed ID: 15478431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intracochlear acoustic pressure measurements: transfer functions of the middle ear and cochlear mechanics.
    Magnan P; Dancer A; Probst R; Smurzynski J; Avan P
    Audiol Neurootol; 1999; 4(3-4):123-8. PubMed ID: 10187919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of cochlear function in mice: distortion-product otoacoustic emissions.
    Martin GK; Stagner BB; Lonsbury-Martin BL
    Curr Protoc Neurosci; 2006 Feb; Chapter 8():Unit8.21C. PubMed ID: 18428646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Posture-induced changes in distortion-product otoacoustic emissions and the potential for noninvasive monitoring of changes in intracranial pressure.
    Voss SE; Horton NJ; Tabucchi TH; Folowosele FO; Shera CA
    Neurocrit Care; 2006; 4(3):251-7. PubMed ID: 16757834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reverse cochlear propagation in the intact cochlea of the gerbil: evidence for slow traveling waves.
    Meenderink SW; van der Heijden M
    J Neurophysiol; 2010 Mar; 103(3):1448-55. PubMed ID: 20089817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Intra- and intersubject variability of acoustically evoked otoacoustic emissions. II. Distortion product otoacoustic emissions].
    Shehata-Dieler WE; Dieler R; Teichert K; Moser LM
    Laryngorhinootologie; 1999 Jun; 78(6):345-50. PubMed ID: 10439355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-invasive measurement of intracranial pressure changes by otoacoustic emissions (OAEs)--a report of preliminary data.
    Frank AM; Alexiou C; Hulin P; Janssen T; Arnold W; Trappe AE
    Zentralbl Neurochir; 2000; 61(4):177-80. PubMed ID: 11392287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for multiple DPOAE components based upon group delay of the 2f(1)-f(2) distortion in the gerbil.
    Faulstich M; Kössl M
    Hear Res; 2000 Feb; 140(1-2):99-110. PubMed ID: 10675638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensitive response to low-frequency cochlear distortion products in the auditory midbrain.
    Abel C; Kössl M
    J Neurophysiol; 2009 Mar; 101(3):1560-74. PubMed ID: 19036870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monitoring cochlear function intraoperatively using distortion product otoacoustic emissions.
    Telischi FF; Widick MP; Lonsbury-Martin BL; McCoy MJ
    Am J Otol; 1995 Sep; 16(5):597-608. PubMed ID: 8588664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A model of real time monitoring of the cochlear function during an induced local ischemia.
    Morawski K; Telischi FF; Niemczyk K
    Hear Res; 2006 Feb; 212(1-2):117-27. PubMed ID: 16403609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extraction of sources of distortion product otoacoustic emissions by onset-decomposition.
    Vetesník A; Turcanu D; Dalhoff E; Gummer AW
    Hear Res; 2009 Oct; 256(1-2):21-38. PubMed ID: 19523509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-invasive measurements of intralabyrinthine pressure changes by electrocochleography and otoacoustic emissions.
    Büki B; Giraudet F; Avan P
    Hear Res; 2009 May; 251(1-2):51-9. PubMed ID: 19233252
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.