BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 22327746)

  • 1. Mesoporous organohydrogels from thermogelling photocrosslinkable nanoemulsions.
    Helgeson ME; Moran SE; An HZ; Doyle PS
    Nat Mater; 2012 Feb; 11(4):344-52. PubMed ID: 22327746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interdroplet Interactions and Rheology of Concentrated Nanoemulsions for Templating Porous Polymers.
    Abbasian Chaleshtari Z; Salimi-Kenari H; Foudazi R
    Langmuir; 2021 Jan; 37(1):76-89. PubMed ID: 33337881
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rheological study of nanoemulsions with repulsive and attractive interdroplet interactions.
    Abbasian Chaleshtari Z; Foudazi R
    Soft Matter; 2023 Nov; 19(43):8337-8348. PubMed ID: 37873582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tough Adhesion of Freezing- and Drying-Tolerant Transparent Nanocomposite Organohydrogels.
    Liu B; Li F; Niu P; Li H
    ACS Appl Mater Interfaces; 2021 May; 13(18):21822-21830. PubMed ID: 33913687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Celebrating Soft Matter's 10th Anniversary: Sequential phase transitions in thermoresponsive nanoemulsions.
    Hsiao LC; Doyle PS
    Soft Matter; 2015 Nov; 11(43):8426-31. PubMed ID: 26367251
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of emulsifier concentration on nanoemulsion gelation.
    Erramreddy VV; Ghosh S
    Langmuir; 2014 Sep; 30(37):11062-74. PubMed ID: 25137632
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Homogeneous percolation versus arrested phase separation in attractively-driven nanoemulsion colloidal gels.
    Helgeson ME; Gao Y; Moran SE; Lee J; Godfrin M; Tripathi A; Bose A; Doyle PS
    Soft Matter; 2014 May; 10(17):3122-33. PubMed ID: 24695862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrospinning of poly(vinyl alcohol) nanofibers loaded with hexadecane nanodroplets.
    Arecchi A; Mannino S; Weiss J
    J Food Sci; 2010 Aug; 75(6):N80-8. PubMed ID: 20722944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gelator-Enhanced Organohydrogels with Switchable Mechanics and High-Strain Shape-Memory Capacity.
    Liu Y; Wang L; Lu H; Huang Z
    Langmuir; 2021 Jun; 37(22):6711-6721. PubMed ID: 34029085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Versatile supramolecular gelators that can harden water, organic solvents and ionic liquids.
    Minakuchi N; Hoe K; Yamaki D; Ten-no S; Nakashima K; Goto M; Mizuhata M; Maruyama T
    Langmuir; 2012 Jun; 28(25):9259-66. PubMed ID: 22650420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptive and freeze-tolerant heteronetwork organohydrogels with enhanced mechanical stability over a wide temperature range.
    Gao H; Zhao Z; Cai Y; Zhou J; Hua W; Chen L; Wang L; Zhang J; Han D; Liu M; Jiang L
    Nat Commun; 2017 Jun; 8():15911. PubMed ID: 28639615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-molecular-weight gelators: elucidating the principles of gelation based on gelator solubility and a cooperative self-assembly model.
    Hirst AR; Coates IA; Boucheteau TR; Miravet JF; Escuder B; Castelletto V; Hamley IW; Smith DK
    J Am Chem Soc; 2008 Jul; 130(28):9113-21. PubMed ID: 18558681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physical Organohydrogels With Extreme Strength and Temperature Tolerance.
    Zhang JW; Dong DD; Guan XY; Zhang EM; Chen YM; Yang K; Zhang YX; Khan MMB; Arfat Y; Aziz Y
    Front Chem; 2020; 8():102. PubMed ID: 32211372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conversion of Viscous Oil-in-Water Nanoemulsions to Viscoelastic Gels upon Removal of Excess Ionic Emulsifier.
    Kadiya K; Ghosh S
    Langmuir; 2019 Dec; 35(52):17061-17074. PubMed ID: 31747517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-assembly and thermoreversible rheology of perfluorocarbon nanoemulsion-based gels with amphiphilic copolymers.
    Shen J; Pan X; Bhatia SR
    Colloids Surf B Biointerfaces; 2021 Jun; 202():111641. PubMed ID: 33706161
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly stable concentrated nanoemulsions by the phase inversion composition method at elevated temperature.
    Yu L; Li C; Xu J; Hao J; Sun D
    Langmuir; 2012 Oct; 28(41):14547-52. PubMed ID: 22985401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tough, Transparent, and Anti-Freezing Nanocomposite Organohydrogels with Photochromic Properties.
    Yang J; Tang C; Sun H; Liu Z; Liu Z; Li K; Zhu L; Qin G; Sun G; Li Y; Chen Q
    ACS Appl Mater Interfaces; 2021 Jul; 13(26):31180-31192. PubMed ID: 34180220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formulation characterization and in vitro drug release of hydrogel-thickened nanoemulsions for topical delivery of 8-methoxypsoralen.
    Barradas TN; Senna JP; Cardoso SA; de Holanda E Silva KG; Elias Mansur CR
    Mater Sci Eng C Mater Biol Appl; 2018 Nov; 92():245-253. PubMed ID: 30184748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stabilization of phase inversion temperature nanoemulsions by surfactant displacement.
    Rao J; McClements DJ
    J Agric Food Chem; 2010 Jun; 58(11):7059-66. PubMed ID: 20476765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of stable nanoemulsions by ultrasound-assisted two-step emulsification process for topical drug delivery: Effect of oil phase composition and surfactant concentration and loratadine as ripening inhibitor.
    Sarheed O; Shouqair D; Ramesh KVRNS; Khaleel T; Amin M; Boateng J; Drechsler M
    Int J Pharm; 2020 Feb; 576():118952. PubMed ID: 31843549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.