These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 22328008)
1. Identification and reconstitution of genetic regulatory networks for improved microbial tolerance to isooctane. Kang A; Chang MW Mol Biosyst; 2012 Apr; 8(4):1350-8. PubMed ID: 22328008 [TBL] [Abstract][Full Text] [Related]
2. Systems-level characterization and engineering of oxidative stress tolerance in Escherichia coli under anaerobic conditions. Kang A; Tan MH; Ling H; Chang MW Mol Biosyst; 2013 Feb; 9(2):285-95. PubMed ID: 23224080 [TBL] [Abstract][Full Text] [Related]
3. Engineering microbial biofuel tolerance and export using efflux pumps. Dunlop MJ; Dossani ZY; Szmidt HL; Chu HC; Lee TS; Keasling JD; Hadi MZ; Mukhopadhyay A Mol Syst Biol; 2011 May; 7():487. PubMed ID: 21556065 [TBL] [Abstract][Full Text] [Related]
4. Combinatorial genetic perturbation to refine metabolic circuits for producing biofuels and biochemicals. Kim HJ; Turner TL; Jin YS Biotechnol Adv; 2013 Nov; 31(6):976-85. PubMed ID: 23562845 [TBL] [Abstract][Full Text] [Related]
5. Dissecting and engineering metabolic and regulatory networks of thermophilic bacteria for biofuel production. Lin L; Xu J Biotechnol Adv; 2013 Nov; 31(6):827-37. PubMed ID: 23510903 [TBL] [Abstract][Full Text] [Related]
6. Engineering of transcriptional regulators enhances microbial stress tolerance. Lin Z; Zhang Y; Wang J Biotechnol Adv; 2013 Nov; 31(6):986-91. PubMed ID: 23473970 [TBL] [Abstract][Full Text] [Related]
7. Global Functional Analysis of Butanol-Sensitive Jeong H; Lee SW; Kim SH; Kim EY; Kim S; Yoon SH J Microbiol Biotechnol; 2017 Jun; 27(6):1171-1179. PubMed ID: 28335589 [TBL] [Abstract][Full Text] [Related]
8. A quantitative method for proteome reallocation using minimal regulatory interventions. Lastiri-Pancardo G; Mercado-Hernández JS; Kim J; Jiménez JI; Utrilla J Nat Chem Biol; 2020 Sep; 16(9):1026-1033. PubMed ID: 32661378 [TBL] [Abstract][Full Text] [Related]
9. Improving microbial biogasoline production in Escherichia coli using tolerance engineering. Foo JL; Jensen HM; Dahl RH; George K; Keasling JD; Lee TS; Leong S; Mukhopadhyay A mBio; 2014 Nov; 5(6):e01932. PubMed ID: 25370492 [TBL] [Abstract][Full Text] [Related]
10. Engineering biofuel tolerance in non-native producing microorganisms. Jin H; Chen L; Wang J; Zhang W Biotechnol Adv; 2014; 32(2):541-8. PubMed ID: 24530635 [TBL] [Abstract][Full Text] [Related]
11. Engineering of microorganisms for the production of biofuels and perspectives based on systems metabolic engineering approaches. Jang YS; Park JM; Choi S; Choi YJ; Seung do Y; Cho JH; Lee SY Biotechnol Adv; 2012; 30(5):989-1000. PubMed ID: 21889585 [TBL] [Abstract][Full Text] [Related]
12. In vitro reconstitution of mevalonate pathway and targeted engineering of farnesene overproduction in Escherichia coli. Zhu F; Zhong X; Hu M; Lu L; Deng Z; Liu T Biotechnol Bioeng; 2014 Jul; 111(7):1396-405. PubMed ID: 24473754 [TBL] [Abstract][Full Text] [Related]
19. Production of advanced biofuels in engineered E. coli. Wen M; Bond-Watts BB; Chang MC Curr Opin Chem Biol; 2013 Jun; 17(3):472-9. PubMed ID: 23659832 [TBL] [Abstract][Full Text] [Related]
20. Microbial engineering strategies to improve cell viability for biochemical production. Lo TM; Teo WS; Ling H; Chen B; Kang A; Chang MW Biotechnol Adv; 2013 Nov; 31(6):903-14. PubMed ID: 23403071 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]