These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 22328156)
21. Amyloid fibril formation by lens crystallin proteins and its implications for cataract formation. Meehan S; Berry Y; Luisi B; Dobson CM; Carver JA; MacPhee CE J Biol Chem; 2004 Jan; 279(5):3413-9. PubMed ID: 14615485 [TBL] [Abstract][Full Text] [Related]
22. Two-dimensional IR spectroscopy and isotope labeling defines the pathway of amyloid formation with residue-specific resolution. Shim SH; Gupta R; Ling YL; Strasfeld DB; Raleigh DP; Zanni MT Proc Natl Acad Sci U S A; 2009 Apr; 106(16):6614-9. PubMed ID: 19346479 [TBL] [Abstract][Full Text] [Related]
23. Spectroscopic Signature for Stable β-Amyloid Fibrils versus β-Sheet-Rich Oligomers. Lomont JP; Rich KL; Maj M; Ho JJ; Ostrander JS; Zanni MT J Phys Chem B; 2018 Jan; 122(1):144-153. PubMed ID: 29220175 [TBL] [Abstract][Full Text] [Related]
24. Partially folded aggregation intermediates of human gammaD-, gammaC-, and gammaS-crystallin are recognized and bound by human alphaB-crystallin chaperone. Acosta-Sampson L; King J J Mol Biol; 2010 Aug; 401(1):134-52. PubMed ID: 20621668 [TBL] [Abstract][Full Text] [Related]
25. Mechanism of the efficient tryptophan fluorescence quenching in human gammaD-crystallin studied by time-resolved fluorescence. Chen J; Toptygin D; Brand L; King J Biochemistry; 2008 Oct; 47(40):10705-21. PubMed ID: 18795792 [TBL] [Abstract][Full Text] [Related]
26. Probing folding and fluorescence quenching in human gammaD crystallin Greek key domains using triple tryptophan mutant proteins. Kosinski-Collins MS; Flaugh SL; King J Protein Sci; 2004 Aug; 13(8):2223-35. PubMed ID: 15273315 [TBL] [Abstract][Full Text] [Related]
27. Structural model of the amyloid fibril formed by beta(2)-microglobulin #21-31 fragment based on vibrational spectroscopy. Hiramatsu H; Goto Y; Naiki H; Kitagawa T J Am Chem Soc; 2005 Jun; 127(22):7988-9. PubMed ID: 15926803 [TBL] [Abstract][Full Text] [Related]
28. Acetylation of Gly1 and Lys2 promotes aggregation of human γD-crystallin. DiMauro MA; Nandi SK; Raghavan CT; Kar RK; Wang B; Bhunia A; Nagaraj RH; Biswas A Biochemistry; 2014 Nov; 53(46):7269-82. PubMed ID: 25393041 [TBL] [Abstract][Full Text] [Related]
29. How to Get Insight into Amyloid Structure and Formation from Infrared Spectroscopy. Moran SD; Zanni MT J Phys Chem Lett; 2014 Jun; 5(11):1984-1993. PubMed ID: 24932380 [TBL] [Abstract][Full Text] [Related]
30. The human W42R γD-crystallin mutant structure provides a link between congenital and age-related cataracts. Ji F; Jung J; Koharudin LM; Gronenborn AM J Biol Chem; 2013 Jan; 288(1):99-109. PubMed ID: 23124202 [TBL] [Abstract][Full Text] [Related]
31. Hydrophobic core mutations associated with cataract development in mice destabilize human gammaD-crystallin. Moreau KL; King J J Biol Chem; 2009 Nov; 284(48):33285-95. PubMed ID: 19758984 [TBL] [Abstract][Full Text] [Related]
32. Wild-type human γD-crystallin promotes aggregation of its oxidation-mimicking, misfolding-prone W42Q mutant. Serebryany E; King JA J Biol Chem; 2015 May; 290(18):11491-503. PubMed ID: 25787081 [TBL] [Abstract][Full Text] [Related]
33. Glutamine deamidation destabilizes human gammaD-crystallin and lowers the kinetic barrier to unfolding. Flaugh SL; Mills IA; King J J Biol Chem; 2006 Oct; 281(41):30782-93. PubMed ID: 16891314 [TBL] [Abstract][Full Text] [Related]
34. Inhibition of amyloid fibrillation and destabilization of fibrils of human γD-crystallin by direct red 80 and orange G. Sharma V; Ghosh KS Int J Biol Macromol; 2017 Dec; 105(Pt 1):956-964. PubMed ID: 28739408 [TBL] [Abstract][Full Text] [Related]
35. GammaD-crystallin associated protein aggregation and lens fiber cell denucleation. Wang K; Cheng C; Li L; Liu H; Huang Q; Xia CH; Yao K; Sun P; Horwitz J; Gong X Invest Ophthalmol Vis Sci; 2007 Aug; 48(8):3719-28. PubMed ID: 17652744 [TBL] [Abstract][Full Text] [Related]
36. The IXI/V motif in the C-terminal extension of alpha-crystallins: alternative interactions and oligomeric assemblies. Pasta SY; Raman B; Ramakrishna T; Rao ChM Mol Vis; 2004 Sep; 10():655-62. PubMed ID: 15448619 [TBL] [Abstract][Full Text] [Related]
37. Single-molecule Force Spectroscopy Predicts a Misfolded, Domain-swapped Conformation in human γD-Crystallin Protein. Garcia-Manyes S; Giganti D; Badilla CL; Lezamiz A; Perales-Calvo J; Beedle AE; Fernández JM J Biol Chem; 2016 Feb; 291(8):4226-35. PubMed ID: 26703476 [TBL] [Abstract][Full Text] [Related]
38. Vibrational circular dichroism as a probe of fibrillogenesis: the origin of the anomalous intensity enhancement of amyloid-like fibrils. Measey TJ; Schweitzer-Stenner R J Am Chem Soc; 2011 Feb; 133(4):1066-76. PubMed ID: 21186804 [TBL] [Abstract][Full Text] [Related]
39. Interdomain side-chain interactions in human gammaD crystallin influencing folding and stability. Flaugh SL; Kosinski-Collins MS; King J Protein Sci; 2005 Aug; 14(8):2030-43. PubMed ID: 16046626 [TBL] [Abstract][Full Text] [Related]
40. Simultaneously Measured Kinetics of Two Amyloid Polymorphs Using Cross Peak Specific 2D IR Spectroscopy. Farrell KM; Fields CR; Dicke SS; Zanni MT J Phys Chem Lett; 2023 Dec; 14(51):11750-11757. PubMed ID: 38117179 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]