These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 22328368)

  • 21. Cassettes for PCR-mediated gene tagging in Candida albicans utilizing nourseothricin resistance.
    Milne SW; Cheetham J; Lloyd D; Aves S; Bates S
    Yeast; 2011 Dec; 28(12):833-41. PubMed ID: 22072586
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular analysis of the Cryptococcus neoformans ADE2 gene, a selectable marker for transformation and gene disruption.
    Sudarshan S; Davidson RC; Heitman J; Alspaugh JA
    Fungal Genet Biol; 1999 Jun; 27(1):36-48. PubMed ID: 10413613
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transformation of Cryptococcus neoformans by electroporation using a transient CRISPR-Cas9 expression (TRACE) system.
    Lin J; Fan Y; Lin X
    Fungal Genet Biol; 2020 May; 138():103364. PubMed ID: 32142753
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Targeted gene deletion in Aspergillus fumigatus using the hygromycin-resistance split-marker approach.
    Gravelat FN; Askew DS; Sheppard DC
    Methods Mol Biol; 2012; 845():119-30. PubMed ID: 22328371
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multiple gene deletion in Cryptococcus neoformans using the Cre-lox system.
    Baker LG; Lodge JK
    Methods Mol Biol; 2012; 845():85-98. PubMed ID: 22328369
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sequence length required for homologous recombination in Cryptococcus neoformans.
    Nelson RT; Pryor BA; Lodge JK
    Fungal Genet Biol; 2003 Feb; 38(1):1-9. PubMed ID: 12553931
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sequential deletion of Pichia pastoris genes by a self-excisable cassette.
    Pan R; Zhang J; Shen WL; Tao ZQ; Li SP; Yan X
    FEMS Yeast Res; 2011 May; 11(3):292-8. PubMed ID: 21208374
    [TBL] [Abstract][Full Text] [Related]  

  • 28. PCR- and ligation-mediated synthesis of marker cassettes with long flanking homology regions for gene disruption in Saccharomyces cerevisiae.
    Nikawa J; Kawabata M
    Nucleic Acids Res; 1998 Feb; 26(3):860-1. PubMed ID: 9443982
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cryptococcus neoformans virulence gene discovery through insertional mutagenesis.
    Idnurm A; Reedy JL; Nussbaum JC; Heitman J
    Eukaryot Cell; 2004 Apr; 3(2):420-9. PubMed ID: 15075272
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The SAT1 flipper, an optimized tool for gene disruption in Candida albicans.
    Reuss O; Vik A; Kolter R; Morschhäuser J
    Gene; 2004 Oct; 341():119-27. PubMed ID: 15474295
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Delete and repeat: a comprehensive toolkit for sequential gene knockout in the budding yeast Saccharomyces cerevisiae.
    Hegemann JH; Heick SB
    Methods Mol Biol; 2011; 765():189-206. PubMed ID: 21815094
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cryptococcus neoformans typing by PCR fingerprinting using (GACA)4 primers based on C. neoformans genome project data.
    Cogliati M; Esposto MC; Liberi G; Tortorano AM; Viviani MA
    J Clin Microbiol; 2007 Oct; 45(10):3427-30. PubMed ID: 17670921
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mating differentiation in Cryptococcus neoformans is negatively regulated by the Crk1 protein kinase.
    Liu KH; Shen WC
    Fungal Genet Biol; 2011 Mar; 48(3):225-40. PubMed ID: 21111055
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improved method for the PCR-based gene disruption in Saccharomyces cerevisiae.
    Koyama H; Sumiya E; Ito T; Sekimizu K
    FEMS Yeast Res; 2008 Mar; 8(2):193-4. PubMed ID: 18028397
    [TBL] [Abstract][Full Text] [Related]  

  • 35. New modules for PCR-based gene targeting in Candida albicans: rapid and efficient gene targeting using 100 bp of flanking homology region.
    Gola S; Martin R; Walther A; Dünkler A; Wendland J
    Yeast; 2003 Dec; 20(16):1339-47. PubMed ID: 14663826
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Serotype identification of Cryptococcus neoformans by multiplex PCR.
    Ito-Kuwa S; Nakamura K; Aoki S; Vidotto V
    Mycoses; 2007 Jul; 50(4):277-81. PubMed ID: 17576319
    [TBL] [Abstract][Full Text] [Related]  

  • 37. PCR-mediated generation of a gene disruption construct without the use of DNA ligase and plasmid vectors.
    Kuwayama H; Obara S; Morio T; Katoh M; Urushihara H; Tanaka Y
    Nucleic Acids Res; 2002 Jan; 30(2):E2. PubMed ID: 11788728
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Heterologous URA3MX cassettes for gene replacement in Saccharomyces cerevisiae.
    Goldstein AL; Pan X; McCusker JH
    Yeast; 1999 Apr; 15(6):507-11. PubMed ID: 10234788
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chemical Inhibitors of Non-Homologous End Joining Increase Targeted Construct Integration in Cryptococcus neoformans.
    Arras SD; Fraser JA
    PLoS One; 2016; 11(9):e0163049. PubMed ID: 27643854
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Systematic capsule gene disruption reveals the central role of galactose metabolism on Cryptococcus neoformans virulence.
    Moyrand F; Fontaine T; Janbon G
    Mol Microbiol; 2007 May; 64(3):771-81. PubMed ID: 17462022
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.