These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 22328374)

  • 1. RNA interference in Cryptococcus neoformans.
    Skowyra ML; Doering TL
    Methods Mol Biol; 2012; 845():165-86. PubMed ID: 22328374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gene Silencing via RNA Interference in Cryptococcus.
    Bose I
    Methods Mol Biol; 2024; 2775():91-106. PubMed ID: 38758313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simplified and effective RNA interference and CRISPR-Cas9 systems for Cryptococcus neoformans.
    Chen Q; An B; Peng X; Wu Y; Peng M; Zhang C; He Y; Sang H; Kong Q
    J Basic Microbiol; 2023 Oct; 63(10):1095-1105. PubMed ID: 37309240
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterizing the role of RNA silencing components in Cryptococcus neoformans.
    Janbon G; Maeng S; Yang DH; Ko YJ; Jung KW; Moyrand F; Floyd A; Heitman J; Bahn YS
    Fungal Genet Biol; 2010 Dec; 47(12):1070-80. PubMed ID: 21067947
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction of a capsule associated protein 10 gene eukaryotic expression vector for RNA interference and confirmation of biologic relevance.
    Ou QS; Su XJ; Lin N; Jiang L; Yang B
    Chin Med J (Engl); 2011 Sep; 124(17):2741-5. PubMed ID: 22040434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transgene induced co-suppression during vegetative growth in Cryptococcus neoformans.
    Wang X; Wang P; Sun S; Darwiche S; Idnurm A; Heitman J
    PLoS Genet; 2012; 8(8):e1002885. PubMed ID: 22916030
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Interfering effect of an intergenic-derived sRNA of Cryptococcus neoformans].
    Zhao Q; Huang Y; Zhang P; Sun X; Zhu X
    Wei Sheng Wu Xue Bao; 2015 May; 55(5):564-9. PubMed ID: 26259480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Identification, cloning and functional verification of U6 promoter from Cryptococcus neoformans].
    Wang Y; Xiao T; Zhu X; Zhao X; Wei D; Zhu X
    Wei Sheng Wu Xue Bao; 2017 Feb; 57(2):197-208. PubMed ID: 29750482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient implementation of RNA interference in the pathogenic yeast Cryptococcus neoformans.
    Bose I; Doering TL
    J Microbiol Methods; 2011 Aug; 86(2):156-9. PubMed ID: 21554906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RNA interference in the pathogenic fungus Cryptococcus neoformans.
    Liu H; Cottrell TR; Pierini LM; Goldman WE; Doering TL
    Genetics; 2002 Feb; 160(2):463-70. PubMed ID: 11861553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of tRNA-derived RNA fragments (tRFs) in Cryptococcus spp.: RNAi-independent generation and possible compensatory effects in a RNAi-deficient genotype.
    Streit RSA; Ferrareze PAG; Vainstein MH; Staats CC
    Fungal Biol; 2021 May; 125(5):389-399. PubMed ID: 33910680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Cryptococcus neoformans GAL7 gene and its use as an inducible promoter.
    Wickes BL; Edman JC
    Mol Microbiol; 1995 Jun; 16(6):1099-109. PubMed ID: 8577246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dicer promotes Atg8 expression through RNAi independent mechanism in Cryptococcus neoformans.
    Feng W; Yang M; Li X; Wei D
    FEMS Yeast Res; 2021 Jul; 21(5):. PubMed ID: 34185085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Non-Dicer RNase III and Four Other Novel Factors Required for RNAi-Mediated Transposon Suppression in the Human Pathogenic Yeast
    Burke JE; Longhurst AD; Natarajan P; Rao B; Liu J; Sales-Lee J; Mortensen Y; Moresco JJ; Diedrich JK; Yates JR; Madhani HD
    G3 (Bethesda); 2019 Jul; 9(7):2235-2244. PubMed ID: 31092606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sex-induced silencing defends the genome of Cryptococcus neoformans via RNAi.
    Wang X; Hsueh YP; Li W; Floyd A; Skalsky R; Heitman J
    Genes Dev; 2010 Nov; 24(22):2566-82. PubMed ID: 21078820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNAi-based gene silencing using a GFP sentinel system in Histoplasma capsulatum.
    Youseff BH; Rappleye CA
    Methods Mol Biol; 2012; 845():151-64. PubMed ID: 22328373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antisense repression in Cryptococcus neoformans as a laboratory tool and potential antifungal strategy.
    Gorlach JM; McDade HC; Perfect JR; Cox GM
    Microbiology (Reading); 2002 Jan; 148(Pt 1):213-219. PubMed ID: 11782513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Construction of simple and efficient DNA vector-based short hairpin RNA expression systems for specific gene silencing in mammalian cells.
    Cheng TL; Chang WT
    Methods Mol Biol; 2007; 408():223-41. PubMed ID: 18314586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNase I
    Wang PH; Schulenberg G; Whitlock S; Worden A; Zhou N; Novak S; Chen W
    BMC Biotechnol; 2018 Jan; 18(1):3. PubMed ID: 29343265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expressing functional siRNAs in mammalian cells using convergent transcription.
    Tran N; Cairns MJ; Dawes IW; Arndt GM
    BMC Biotechnol; 2003 Nov; 3():21. PubMed ID: 14604435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.