These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. [Development of a new recombineering system by gap repair]. Li SH; Hong X; Yu M; Chen W; Huang CF; Zhou JG Yi Chuan Xue Bao; 2005 May; 32(5):533-7. PubMed ID: 16018266 [TBL] [Abstract][Full Text] [Related]
5. Efficient and seamless DNA recombineering using a thymidylate synthase A selection system in Escherichia coli. Wong QN; Ng VC; Lin MC; Kung HF; Chan D; Huang JD Nucleic Acids Res; 2005 Mar; 33(6):e59. PubMed ID: 15800210 [TBL] [Abstract][Full Text] [Related]
6. Mini-lambda: a tractable system for chromosome and BAC engineering. Court DL; Swaminathan S; Yu D; Wilson H; Baker T; Bubunenko M; Sawitzke J; Sharan SK Gene; 2003 Oct; 315():63-9. PubMed ID: 14557065 [TBL] [Abstract][Full Text] [Related]
8. A new positive/negative selection scheme for precise BAC recombineering. Wang S; Zhao Y; Leiby M; Zhu J Mol Biotechnol; 2009 May; 42(1):110-6. PubMed ID: 19160076 [TBL] [Abstract][Full Text] [Related]
9. A recombineering-based gene tagging system for Arabidopsis. Alonso JM; Stepanova AN Methods Mol Biol; 2015; 1227():233-43. PubMed ID: 25239749 [TBL] [Abstract][Full Text] [Related]
10. A highly efficient Escherichia coli-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA. Lee EC; Yu D; Martinez de Velasco J; Tessarollo L; Swing DA; Court DL; Jenkins NA; Copeland NG Genomics; 2001 Apr; 73(1):56-65. PubMed ID: 11352566 [TBL] [Abstract][Full Text] [Related]
11. Development of a bacterial artificial chromosome (BAC) recombineering procedure using galK-untranslated region (UTR) for the mutation of diploid genes. Dai G; Kim S; O'Callaghan DJ; Kim SK J Virol Methods; 2012 Jun; 182(1-2):18-26. PubMed ID: 22407056 [TBL] [Abstract][Full Text] [Related]
12. Scarless Baculovirus Genome Editing Using Lambda-Red Recombineering in E. coli. de Jong LA; van Oosten L; Pijlman GP Methods Mol Biol; 2024; 2829():109-126. PubMed ID: 38951330 [TBL] [Abstract][Full Text] [Related]
13. oHSV Genome Editing by Means of galK Recombineering. Menotti L; Leoni V; Gatta V; Petrovic B; Vannini A; Pepe S; Gianni T; Campadelli-Fiume G Methods Mol Biol; 2020; 2060():131-151. PubMed ID: 31617176 [TBL] [Abstract][Full Text] [Related]
14. Point mutation of bacterial artificial chromosomes by ET recombination. Muyrers JP; Zhang Y; Benes V; Testa G; Ansorge W; Stewart AF EMBO Rep; 2000 Sep; 1(3):239-43. PubMed ID: 11256606 [TBL] [Abstract][Full Text] [Related]
15. Recombineering: a powerful new tool for mouse functional genomics. Copeland NG; Jenkins NA; Court DL Nat Rev Genet; 2001 Oct; 2(10):769-79. PubMed ID: 11584293 [TBL] [Abstract][Full Text] [Related]
16. [Recombineering and its application]. Zhou JG; Hong X; Huang CF Yi Chuan Xue Bao; 2003 Oct; 30(10):983-8. PubMed ID: 14669518 [TBL] [Abstract][Full Text] [Related]
19. BAC engineering for the generation of ES cell-targeting constructs and mouse transgenes. Testa G; Vintersten K; Zhang Y; Benes V; Muyrers JP; Stewart AF Methods Mol Biol; 2004; 256():123-39. PubMed ID: 15024164 [No Abstract] [Full Text] [Related]
20. A general method to modify BACs to generate large recombinant DNA fragments. Shen W; Huang Y; Tang Y; Liu DP; Liang CC Mol Biotechnol; 2005 Nov; 31(3):181-6. PubMed ID: 16230767 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]