BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 22328506)

  • 1. Neuregulin-1 potentiates agrin-induced acetylcholine receptor clustering through muscle-specific kinase phosphorylation.
    Ngo ST; Cole RN; Sunn N; Phillips WD; Noakes PG
    J Cell Sci; 2012 Mar; 125(Pt 6):1531-43. PubMed ID: 22328506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [The role of protein tyrosine phosphatases Shp-2 involved in the formation of the neuromuscular junction].
    Zhao XT; Zhang Z
    Zhonghua Yi Xue Za Zhi; 2006 Apr; 86(15):1052-6. PubMed ID: 16784710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tyrosine phosphatase regulation of MuSK-dependent acetylcholine receptor clustering.
    Madhavan R; Zhao XT; Ruegg MA; Peng HB
    Mol Cell Neurosci; 2005 Mar; 28(3):403-16. PubMed ID: 15737732
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tyrosine phosphatases such as SHP-2 act in a balance with Src-family kinases in stabilization of postsynaptic clusters of acetylcholine receptors.
    Camilleri AA; Willmann R; Sadasivam G; Lin S; Rüegg MA; Gesemann M; Fuhrer C
    BMC Neurosci; 2007 Jul; 8():46. PubMed ID: 17605785
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel pathway for MuSK to induce key genes in neuromuscular synapse formation.
    Lacazette E; Le Calvez S; Gajendran N; Brenner HR
    J Cell Biol; 2003 May; 161(4):727-36. PubMed ID: 12756238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Association of muscle-specific kinase MuSK with the acetylcholine receptor in mammalian muscle.
    Fuhrer C; Sugiyama JE; Taylor RG; Hall ZW
    EMBO J; 1997 Aug; 16(16):4951-60. PubMed ID: 9305637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Postsynaptic requirement for Abl kinases in assembly of the neuromuscular junction.
    Finn AJ; Feng G; Pendergast AM
    Nat Neurosci; 2003 Jul; 6(7):717-23. PubMed ID: 12796783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of ACh receptor clustering by the tyrosine phosphatase Shp2.
    Zhao XT; Qian YK; Chan AW; Madhavan R; Peng HB
    Dev Neurobiol; 2007 Nov; 67(13):1789-801. PubMed ID: 17659592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Induction of multiple signaling loops by MuSK during neuromuscular synapse formation.
    Moore C; Leu M; Müller U; Brenner HR
    Proc Natl Acad Sci U S A; 2001 Dec; 98(25):14655-60. PubMed ID: 11717400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Constitutively active MuSK is clustered in the absence of agrin and induces ectopic postsynaptic-like membranes in skeletal muscle fibers.
    Jones G; Moore C; Hashemolhosseini S; Brenner HR
    J Neurosci; 1999 May; 19(9):3376-83. PubMed ID: 10212297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of the neuromuscular junction.
    Witzemann V
    Cell Tissue Res; 2006 Nov; 326(2):263-71. PubMed ID: 16819627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural agrin: a synaptic stabiliser.
    Ngo ST; Noakes PG; Phillips WD
    Int J Biochem Cell Biol; 2007; 39(5):863-7. PubMed ID: 17126587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Myasthenia gravis experimentally induced with muscle-specific kinase.
    Shigemoto K; Kubo S; Jie C; Hato N; Abe Y; Ueda N; Kobayashi N; Kameda K; Mominoki K; Miyazawa A; Ishigami A; Matsuda S; Maruyama N
    Ann N Y Acad Sci; 2008; 1132():93-8. PubMed ID: 18096854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. N-acetyllactosamine and the CT carbohydrate antigen mediate agrin-dependent activation of MuSK and acetylcholine receptor clustering in skeletal muscle.
    Parkhomovskiy N; Kammesheidt A; Martin PT
    Mol Cell Neurosci; 2000 Apr; 15(4):380-97. PubMed ID: 10845774
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuromuscular synapse formation in mice lacking motor neuron- and skeletal muscle-derived Neuregulin-1.
    Jaworski A; Burden SJ
    J Neurosci; 2006 Jan; 26(2):655-61. PubMed ID: 16407563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laminin-1 redistributes postsynaptic proteins and requires rapsyn, tyrosine phosphorylation, and Src and Fyn to stably cluster acetylcholine receptors.
    Marangi PA; Wieland ST; Fuhrer C
    J Cell Biol; 2002 May; 157(5):883-95. PubMed ID: 12034776
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laminin-induced acetylcholine receptor clustering: an alternative pathway.
    Sugiyama JE; Glass DJ; Yancopoulos GD; Hall ZW
    J Cell Biol; 1997 Oct; 139(1):181-91. PubMed ID: 9314538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphoinositide 3-kinase acts through RAC and Cdc42 during agrin-induced acetylcholine receptor clustering.
    Nizhynska V; Neumueller R; Herbst R
    Dev Neurobiol; 2007 Jul; 67(8):1047-58. PubMed ID: 17565704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MuSK levels differ between adult skeletal muscles and influence postsynaptic plasticity.
    Punga AR; Maj M; Lin S; Meinen S; Rüegg MA
    Eur J Neurosci; 2011 Mar; 33(5):890-8. PubMed ID: 21255125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Agrin triggers the clustering of raft-associated acetylcholine receptors through actin cytoskeleton reorganization.
    Cartaud A; Stetzkowski-Marden F; Maoui A; Cartaud J
    Biol Cell; 2011 Jun; 103(6):287-301. PubMed ID: 21524273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.