BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 22328517)

  • 1. Chromatin mobility is increased at sites of DNA double-strand breaks.
    Krawczyk PM; Borovski T; Stap J; Cijsouw T; ten Cate R; Medema JP; Kanaar R; Franken NA; Aten JA
    J Cell Sci; 2012 May; 125(Pt 9):2127-33. PubMed ID: 22328517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of the mobility of DNA double-strand break-containing chromosome domains in living mammalian cells.
    Krawczyk PM; Stap J; Hoebe RA; van Oven CH; Kanaar R; Aten JA
    Methods Mol Biol; 2008; 463():309-20. PubMed ID: 18951175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 53BP1 promotes non-homologous end joining of telomeres by increasing chromatin mobility.
    Dimitrova N; Chen YC; Spector DL; de Lange T
    Nature; 2008 Nov; 456(7221):524-8. PubMed ID: 18931659
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of pairing between broken DNA-containing chromatin regions by Ku80, DNA-PKcs, ATM, and 53BP1.
    Yamauchi M; Shibata A; Suzuki K; Suzuki M; Niimi A; Kondo H; Miura M; Hirakawa M; Tsujita K; Yamashita S; Matsuda N
    Sci Rep; 2017 Feb; 7():41812. PubMed ID: 28155885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromosome aberration model combining radiation tracks, chromatin structure, DSB repair and chromatin mobility.
    Friedland W; Kundrát P
    Radiat Prot Dosimetry; 2015 Sep; 166(1-4):71-4. PubMed ID: 25883314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ATM alters the otherwise robust chromatin mobility at sites of DNA double-strand breaks (DSBs) in human cells.
    Becker A; Durante M; Taucher-Scholz G; Jakob B
    PLoS One; 2014; 9(3):e92640. PubMed ID: 24651490
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DSB (Im)mobility and DNA repair compartmentalization in mammalian cells.
    Lemaître C; Soutoglou E
    J Mol Biol; 2015 Feb; 427(3):652-8. PubMed ID: 25463437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA repair in the context of chromatin: new molecular insights by the nanoscale detection of DNA repair complexes using transmission electron microscopy.
    Rübe CE; Lorat Y; Schuler N; Schanz S; Wennemuth G; Rübe C
    DNA Repair (Amst); 2011 Apr; 10(4):427-37. PubMed ID: 21342792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 53BP1 and the LINC Complex Promote Microtubule-Dependent DSB Mobility and DNA Repair.
    Lottersberger F; Karssemeijer RA; Dimitrova N; de Lange T
    Cell; 2015 Nov; 163(4):880-93. PubMed ID: 26544937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and Dynamical Signatures of Local DNA Damage in Live Cells.
    Eaton JA; Zidovska A
    Biophys J; 2020 May; 118(9):2168-2180. PubMed ID: 31818467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clustered DNA damage concentrated in particle trajectories causes persistent large-scale rearrangements in chromatin architecture.
    Timm S; Lorat Y; Jakob B; Taucher-Scholz G; Rübe CE
    Radiother Oncol; 2018 Dec; 129(3):600-610. PubMed ID: 30049456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The histone variant macroH2A1.1 is recruited to DSBs through a mechanism involving PARP1.
    Xu C; Xu Y; Gursoy-Yuzugullu O; Price BD
    FEBS Lett; 2012 Nov; 586(21):3920-5. PubMed ID: 23031826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA lesions sequestered in micronuclei induce a local defective-damage response.
    Terradas M; Martín M; Tusell L; Genescà A
    DNA Repair (Amst); 2009 Oct; 8(10):1225-34. PubMed ID: 19683478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RNF8 regulates assembly of RAD51 at DNA double-strand breaks in the absence of BRCA1 and 53BP1.
    Nakada S; Yonamine RM; Matsuo K
    Cancer Res; 2012 Oct; 72(19):4974-83. PubMed ID: 22865450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Organizing DNA repair in the nucleus: DSBs hit the road.
    Marnef A; Legube G
    Curr Opin Cell Biol; 2017 Jun; 46():1-8. PubMed ID: 28068556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic assembly and sustained retention of 53BP1 at the sites of DNA damage are controlled by Mdc1/NFBD1.
    Bekker-Jensen S; Lukas C; Melander F; Bartek J; Lukas J
    J Cell Biol; 2005 Jul; 170(2):201-11. PubMed ID: 16009723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks.
    Huyen Y; Zgheib O; Ditullio RA; Gorgoulis VG; Zacharatos P; Petty TJ; Sheston EA; Mellert HS; Stavridi ES; Halazonetis TD
    Nature; 2004 Nov; 432(7015):406-11. PubMed ID: 15525939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Induction of chromosome aberrations in unirradiated chromatin after partial irradiation of a cell nucleus.
    Ludwików G; Xiao Y; Hoebe RA; Franken NA; Darroudi F; Stap J; Van Oven CH; Van Noorden CJ; Aten JA
    Int J Radiat Biol; 2002 Apr; 78(4):239-47. PubMed ID: 12020435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differences in DNA double strand breaks repair in male germ cell types: lessons learned from a differential expression of Mdc1 and 53BP1.
    Ahmed EA; van der Vaart A; Barten A; Kal HB; Chen J; Lou Z; Minter-Dykhouse K; Bartkova J; Bartek J; de Boer P; de Rooij DG
    DNA Repair (Amst); 2007 Sep; 6(9):1243-54. PubMed ID: 17376750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The ubiquitin- and SUMO-dependent signaling response to DNA double-strand breaks.
    Bekker-Jensen S; Mailand N
    FEBS Lett; 2011 Sep; 585(18):2914-9. PubMed ID: 21664912
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.