BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 2232859)

  • 1. Fast cyclic voltammetry: improved sensitivity to dopamine with extended oxidation scan limits.
    Hafizi S; Kruk ZL; Stamford JA
    J Neurosci Methods; 1990 Jul; 33(1):41-9. PubMed ID: 2232859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Short-range differential pulse voltammetry for fast, selective analysis of basal levels of cerebral compounds in vivo.
    Crespi F; Möbius C; Neudeck A
    J Neurosci Methods; 1993 Nov; 50(2):225-35. PubMed ID: 7509018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Higher sensitivity dopamine measurements with faster-scan cyclic voltammetry.
    Keithley RB; Takmakov P; Bucher ES; Belle AM; Owesson-White CA; Park J; Wightman RM
    Anal Chem; 2011 May; 83(9):3563-71. PubMed ID: 21473572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo selective monitoring of basal levels of cerebral dopamine using voltammetry with Nafion modified (NA-CRO) carbon fibre micro-electrodes.
    Crespi F; Möbius C
    J Neurosci Methods; 1992 May; 42(3):149-61. PubMed ID: 1501500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Overoxidized polypyrrole-coated carbon fiber microelectrodes for dopamine measurements with fast-scan cyclic voltammetry.
    Pihel K; Walker QD; Wightman RM
    Anal Chem; 1996 Jul; 68(13):2084-9. PubMed ID: 9027223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interference by DOPAC and ascorbate during attempts to measure drug-induced changes in neostriatal dopamine with Nafion-coated, carbon-fiber electrodes.
    Wiedemann DJ; Basse-Tomusk A; Wilson RL; Rebec GV; Wightman RM
    J Neurosci Methods; 1990 Oct; 35(1):9-18. PubMed ID: 2148961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Overoxidation of carbon-fiber microelectrodes enhances dopamine adsorption and increases sensitivity.
    Heien ML; Phillips PE; Stuber GD; Seipel AT; Wightman RM
    Analyst; 2003 Dec; 128(12):1413-9. PubMed ID: 14737224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estrogen modulates responses of striatal dopamine neurons to MPP(+): evaluations using in vitro and in vivo techniques.
    Arvin M; Fedorkova L; Disshon KA; Dluzen DE; Leipheimer RE
    Brain Res; 2000 Jul; 872(1-2):160-71. PubMed ID: 10924688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo voltammetric determination of the kinetics of dopamine metabolism in the rat.
    Michael AC; Justice JB; Neill DB
    Neurosci Lett; 1985 May; 56(3):365-9. PubMed ID: 4022449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-speed voltammetry: dual measurement of dopamine and serotonin.
    Nakazato T; Akiyama A
    J Neurosci Methods; 1999 Jul; 89(2):105-10. PubMed ID: 10491940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Concurrent on-line analysis of striatal ascorbate, dopamine and dihydroxyphenylacetic acid concentrations by in vivo voltammetry.
    Gonzalez-Mora JL; Sanchez-Bruno JA; Mas M
    Neurosci Lett; 1988 Mar; 86(1):61-6. PubMed ID: 3362430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fundamentals of fast-scan cyclic voltammetry for dopamine detection.
    Venton BJ; Cao Q
    Analyst; 2020 Feb; 145(4):1158-1168. PubMed ID: 31922176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential pulse voltammetry: simultaneous in vivo measurement of ascorbic acid, catechols and 5-hydroxyindoles in the rat striatum.
    Crespi F; Sharp T; Maidment NT; Marsden CA
    Brain Res; 1984 Nov; 322(1):135-8. PubMed ID: 6083820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast in vivo monitoring of electrically evoked dopamine release by differential pulse amperometry with untreated carbon fibre electrodes.
    Suaud-Chagny MF; Brun P; Buda M; Gonon F
    J Neurosci Methods; 1992 Dec; 45(3):183-90. PubMed ID: 1363483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel electrochemical approach for prolonged measurement of absolute levels of extracellular dopamine in brain slices.
    Burrell MH; Atcherley CW; Heien ML; Lipski J
    ACS Chem Neurosci; 2015 Nov; 6(11):1802-12. PubMed ID: 26322962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of fast cyclic voltammetry to measurement of electrically evoked dopamine overflow from brain slices in vitro.
    Bull DR; Palij P; Sheehan MJ; Millar J; Stamford JA; Kruk ZL; Humphrey PP
    J Neurosci Methods; 1990 Apr; 32(1):37-44. PubMed ID: 2139913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon nanotube-modified microelectrodes for simultaneous detection of dopamine and serotonin in vivo.
    Swamy BE; Venton BJ
    Analyst; 2007 Sep; 132(9):876-84. PubMed ID: 17710262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-time monitoring of electrically evoked catecholamine signals in the songbird striatum using in vivo fast-scan cyclic voltammetry.
    Smith AR; Garris PA; Casto JM
    J Chem Neuroanat; 2015; 66-67():28-39. PubMed ID: 25900708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 2-Guanidinoethanol increased dopamine release and 3,4-dihydroxyphenylacetic acid content, but not homovanillic acid content in the rat brain: electroneurochemical and enzymological studies.
    Yokoi I; Kabuto H; Hukuyama K; Nishijima Y; Itoh T; Yufu K; Akiyama K; Mori A
    Neurochem Res; 1992 Jul; 17(7):735-40. PubMed ID: 1407269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement of extracellular basal levels of serotonin in vivo using nafion-coated carbon fibre electrodes combined with differential pulse voltammetry.
    Crespi F; Martin KF; Marsden CA
    Neuroscience; 1988 Dec; 27(3):885-96. PubMed ID: 3252175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.