These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 22328615)

  • 21. Adaptive control for backward quadrupedal walking. IV. Hindlimb kinetics during stance and swing.
    Perell KL; Gregor RJ; Buford JA; Smith JL
    J Neurophysiol; 1993 Dec; 70(6):2226-40. PubMed ID: 8120579
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A comparison of treadmill locomotion in adult cats before and after spinal transection.
    BĂ©langer M; Drew T; Provencher J; Rossignol S
    J Neurophysiol; 1996 Jul; 76(1):471-91. PubMed ID: 8836238
    [TBL] [Abstract][Full Text] [Related]  

  • 23. System identification of muscle-joint interactions of the cat hind limb during locomotion.
    Harischandra N; Ekeberg O
    Biol Cybern; 2008 Aug; 99(2):125-38. PubMed ID: 18648849
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multiple-input single-output closed-loop isometric force control using asynchronous intrafascicular multi-electrode stimulation.
    Frankel MA; Dowden BR; Mathews VJ; Normann RA; Clark GA; Meek SG
    IEEE Trans Neural Syst Rehabil Eng; 2011 Jun; 19(3):325-32. PubMed ID: 21385670
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Contribution of the motor cortex to the structure and the timing of hindlimb locomotion in the cat: a microstimulation study.
    Bretzner F; Drew T
    J Neurophysiol; 2005 Jul; 94(1):657-72. PubMed ID: 15788518
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Patterns of intermuscular inhibitory force feedback across cat hindlimbs suggest a flexible system for regulating whole limb mechanics.
    Lyle MA; Nichols TR
    J Neurophysiol; 2018 Feb; 119(2):668-678. PubMed ID: 29142095
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Corrective responses to loss of ground support during walking. II. Comparison of intact and chronic spinal cats.
    Hiebert GW; Gorassini MA; Jiang W; Prochazka A; Pearson KG
    J Neurophysiol; 1994 Feb; 71(2):611-22. PubMed ID: 8176430
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Contribution of hind limb flexor muscle afferents to the timing of phase transitions in the cat step cycle.
    Hiebert GW; Whelan PJ; Prochazka A; Pearson KG
    J Neurophysiol; 1996 Mar; 75(3):1126-37. PubMed ID: 8867123
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Unexpected motor patterns for hindlimb muscles during slope walking in the cat.
    Smith JL; Carlson-Kuhta P
    J Neurophysiol; 1995 Nov; 74(5):2211-5. PubMed ID: 8592212
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Short-latency crossed inhibitory responses in extensor muscles during locomotion in the cat.
    Frigon A; Rossignol S
    J Neurophysiol; 2008 Feb; 99(2):989-98. PubMed ID: 18094100
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stepping behaviors in chronic spinal cats with one hindlimb deafferented.
    Giuliani CA; Smith JL
    J Neurosci; 1987 Aug; 7(8):2537-46. PubMed ID: 3612253
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Contribution of different limb controllers to modulation of motor cortex neurons during locomotion.
    Zelenin PV; Deliagina TG; Orlovsky GN; Karayannidou A; Dasgupta NM; Sirota MG; Beloozerova IN
    J Neurosci; 2011 Mar; 31(12):4636-49. PubMed ID: 21430163
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spinal and supraspinal control of the direction of stepping during locomotion.
    Musienko PE; Zelenin PV; Lyalka VF; Gerasimenko YP; Orlovsky GN; Deliagina TG
    J Neurosci; 2012 Nov; 32(48):17442-53. PubMed ID: 23197735
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Left-Right Locomotor Coordination in Human Neonates.
    Dewolf AH; La Scaleia V; Fabiano A; Sylos-Labini F; Mondi V; Picone S; Di Paolo A; Paolillo P; Ivanenko Y; Lacquaniti F
    J Neurosci; 2022 Aug; 42(34):6566-6580. PubMed ID: 35831172
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Forms of forward quadrupedal locomotion. III. A comparison of posture, hindlimb kinematics, and motor patterns for downslope and level walking.
    Smith JL; Carlson-Kuhta P; Trank TV
    J Neurophysiol; 1998 Apr; 79(4):1702-16. PubMed ID: 9535940
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Computer simulation of stepping in the hind legs of the cat: an examination of mechanisms regulating the stance-to-swing transition.
    Ekeberg O; Pearson K
    J Neurophysiol; 2005 Dec; 94(6):4256-68. PubMed ID: 16049149
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Contribution of sensory feedback to the generation of extensor activity during walking in the decerebrate Cat.
    Hiebert GW; Pearson KG
    J Neurophysiol; 1999 Feb; 81(2):758-70. PubMed ID: 10036275
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Spinal Control of Backward Locomotion.
    Harnie J; Audet J; Klishko AN; Doelman A; Prilutsky BI; Frigon A
    J Neurosci; 2021 Jan; 41(4):630-647. PubMed ID: 33239399
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Force regulation of ankle extensor muscle activity in freely walking cats.
    Donelan JM; McVea DA; Pearson KG
    J Neurophysiol; 2009 Jan; 101(1):360-71. PubMed ID: 19019974
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Correlation of muscle function and bone strain in the hindlimb of the river cooter turtle (Pseudemys concinna).
    Aiello BR; Blob RW; Butcher MT
    J Morphol; 2013 Sep; 274(9):1060-9. PubMed ID: 23733583
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.