These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 22328782)

  • 1. Spliceman--a computational web server that predicts sequence variations in pre-mRNA splicing.
    Lim KH; Fairbrother WG
    Bioinformatics; 2012 Apr; 28(7):1031-2. PubMed ID: 22328782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spliceman2: a computational web server that predicts defects in pre-mRNA splicing.
    Cygan KJ; Sanford CH; Fairbrother WG
    Bioinformatics; 2017 Sep; 33(18):2943-2945. PubMed ID: 28911038
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using positional distribution to identify splicing elements and predict pre-mRNA processing defects in human genes.
    Lim KH; Ferraris L; Filloux ME; Raphael BJ; Fairbrother WG
    Proc Natl Acad Sci U S A; 2011 Jul; 108(27):11093-8. PubMed ID: 21685335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional analysis of a large set of BRCA2 exon 7 variants highlights the predictive value of hexamer scores in detecting alterations of exonic splicing regulatory elements.
    Di Giacomo D; Gaildrat P; Abuli A; Abdat J; Frébourg T; Tosi M; Martins A
    Hum Mutat; 2013 Nov; 34(11):1547-57. PubMed ID: 23983145
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AVISPA: a web tool for the prediction and analysis of alternative splicing.
    Barash Y; Vaquero-Garcia J; González-Vallinas J; Xiong HY; Gao W; Lee LJ; Frey BJ
    Genome Biol; 2013; 14(10):R114. PubMed ID: 24156756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ESEfinder: A web resource to identify exonic splicing enhancers.
    Cartegni L; Wang J; Zhu Z; Zhang MQ; Krainer AR
    Nucleic Acids Res; 2003 Jul; 31(13):3568-71. PubMed ID: 12824367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated splicing mutation analysis by information theory.
    Nalla VK; Rogan PK
    Hum Mutat; 2005 Apr; 25(4):334-42. PubMed ID: 15776446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of mutant mRNA splice isoforms by information theory-based exon definition.
    Mucaki EJ; Shirley BC; Rogan PK
    Hum Mutat; 2013 Apr; 34(4):557-65. PubMed ID: 23348723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro and in silico analysis reveals an efficient algorithm to predict the splicing consequences of mutations at the 5' splice sites.
    Sahashi K; Masuda A; Matsuura T; Shinmi J; Zhang Z; Takeshima Y; Matsuo M; Sobue G; Ohno K
    Nucleic Acids Res; 2007; 35(18):5995-6003. PubMed ID: 17726045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RESCUE-ESE identifies candidate exonic splicing enhancers in vertebrate exons.
    Fairbrother WG; Yeo GW; Yeh R; Goldstein P; Mawson M; Sharp PA; Burge CB
    Nucleic Acids Res; 2004 Jul; 32(Web Server issue):W187-90. PubMed ID: 15215377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Defective pre-mRNA splicing in PKD1 due to presumed missense and synonymous mutations causing autosomal dominant polycystic disease.
    Gonzalez-Paredes FJ; Ramos-Trujillo E; Claverie-Martin F
    Gene; 2014 Aug; 546(2):243-9. PubMed ID: 24907393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Splicing mutations in human genetic disorders: examples, detection, and confirmation.
    Anna A; Monika G
    J Appl Genet; 2018 Aug; 59(3):253-268. PubMed ID: 29680930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Splicing in action: assessing disease causing sequence changes.
    Baralle D; Baralle M
    J Med Genet; 2005 Oct; 42(10):737-48. PubMed ID: 16199547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predictive identification of exonic splicing enhancers in human genes.
    Fairbrother WG; Yeh RF; Sharp PA; Burge CB
    Science; 2002 Aug; 297(5583):1007-13. PubMed ID: 12114529
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distribution of SR protein exonic splicing enhancer motifs in human protein-coding genes.
    Wang J; Smith PJ; Krainer AR; Zhang MQ
    Nucleic Acids Res; 2005; 33(16):5053-62. PubMed ID: 16147989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of the functional impact on the pre-mRNA splicing process of 28 nucleotide variants associated with Pompe disease in GAA exon 2 and their recovery using antisense technology.
    Goina E; Musco L; Dardis A; Buratti E
    Hum Mutat; 2019 Nov; 40(11):2121-2130. PubMed ID: 31301153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of intronic mutations in the LDLR gene on pre-mRNA splicing: Comparison of wet-lab and bioinformatics analyses.
    Holla ØL; Nakken S; Mattingsdal M; Ranheim T; Berge KE; Defesche JC; Leren TP
    Mol Genet Metab; 2009 Apr; 96(4):245-52. PubMed ID: 19208450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In silico and in vivo splicing analysis of MLH1 and MSH2 missense mutations shows exon- and tissue-specific effects.
    Lastella P; Surdo NC; Resta N; Guanti G; Stella A
    BMC Genomics; 2006 Sep; 7():243. PubMed ID: 16995940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mathematical modeling identifies potential gene structure determinants of co-transcriptional control of alternative pre-mRNA splicing.
    Davis-Turak J; Johnson TL; Hoffmann A
    Nucleic Acids Res; 2018 Nov; 46(20):10598-10607. PubMed ID: 30272246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RASE: recognition of alternatively spliced exons in C.elegans.
    Rätsch G; Sonnenburg S; Schölkopf B
    Bioinformatics; 2005 Jun; 21 Suppl 1():i369-77. PubMed ID: 15961480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.