These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 22328867)

  • 21. Parallelisation of equation-based simulation programs on heterogeneous computing systems.
    Nikolić DD
    PeerJ Comput Sci; 2018; 4():e160. PubMed ID: 33816813
    [TBL] [Abstract][Full Text] [Related]  

  • 22. SU-E-T-493: Accelerated Monte Carlo Methods for Photon Dosimetry Using a Dual-GPU System and CUDA.
    Liu T; Ding A; Xu X
    Med Phys; 2012 Jun; 39(6Part17):3818. PubMed ID: 28517481
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Next-generation acceleration and code optimization for light transport in turbid media using GPUs.
    Alerstam E; Lo WC; Han TD; Rose J; Andersson-Engels S; Lilge L
    Biomed Opt Express; 2010 Sep; 1(2):658-75. PubMed ID: 21258498
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Power-Performance Perspective to Multiobjective Electroencephalogram Feature Selection on Heterogeneous Parallel Platforms.
    Escobar JJ; Ortega J; Díaz AF; González J; Damas M
    J Comput Biol; 2018 Aug; 25(8):882-893. PubMed ID: 29957032
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Graphics Processing Unit Acceleration and Parallelization of GENESIS for Large-Scale Molecular Dynamics Simulations.
    Jung J; Naurse A; Kobayashi C; Sugita Y
    J Chem Theory Comput; 2016 Oct; 12(10):4947-4958. PubMed ID: 27631425
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Heterogeneous CPU+GPU-Enabled Simulations for DFTB Molecular Dynamics of Large Chemical and Biological Systems.
    Allec SI; Sun Y; Sun J; Chang CA; Wong BM
    J Chem Theory Comput; 2019 May; 15(5):2807-2815. PubMed ID: 30916958
    [TBL] [Abstract][Full Text] [Related]  

  • 27. GPU algorithms for density matrix methods on MOPAC: linear scaling electronic structure calculations for large molecular systems.
    Maia JDC; Dos Anjos Formiga Cabral L; Rocha GB
    J Mol Model; 2020 Oct; 26(11):313. PubMed ID: 33090341
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Boosting Free-Energy Perturbation Calculations with GPU-Accelerated NAMD.
    Chen H; Maia JDC; Radak BK; Hardy DJ; Cai W; Chipot C; Tajkhorshid E
    J Chem Inf Model; 2020 Nov; 60(11):5301-5307. PubMed ID: 32805108
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A GPU solvent-solvent interaction calculation accelerator for biomolecular simulations using the GROMOS software.
    Schmid N; Bötschi M; van Gunsteren WF
    J Comput Chem; 2010 Jun; 31(8):1636-43. PubMed ID: 20127715
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A nonvoxel-based dose convolution/superposition algorithm optimized for scalable GPU architectures.
    Neylon J; Sheng K; Yu V; Chen Q; Low DA; Kupelian P; Santhanam A
    Med Phys; 2014 Oct; 41(10):101711. PubMed ID: 25281950
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluating the power of GPU acceleration for IDW interpolation algorithm.
    Mei G
    ScientificWorldJournal; 2014; 2014():171574. PubMed ID: 24707195
    [TBL] [Abstract][Full Text] [Related]  

  • 32. GPU Linear Algebra Libraries and GPGPU Programming for Accelerating MOPAC Semiempirical Quantum Chemistry Calculations.
    Maia JD; Urquiza Carvalho GA; Mangueira CP; Santana SR; Cabral LA; Rocha GB
    J Chem Theory Comput; 2012 Sep; 8(9):3072-81. PubMed ID: 26605718
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Real-world comparison of CPU and GPU implementations of SNPrank: a network analysis tool for GWAS.
    Davis NA; Pandey A; McKinney BA
    Bioinformatics; 2011 Jan; 27(2):284-5. PubMed ID: 21115438
    [TBL] [Abstract][Full Text] [Related]  

  • 34. ddcMD: A fully GPU-accelerated molecular dynamics program for the Martini force field.
    Zhang X; Sundram S; Oppelstrup T; Kokkila-Schumacher SIL; Carpenter TS; Ingólfsson HI; Streitz FH; Lightstone FC; Glosli JN
    J Chem Phys; 2020 Jul; 153(4):045103. PubMed ID: 32752727
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Best bang for your buck: GPU nodes for GROMACS biomolecular simulations.
    Kutzner C; Páll S; Fechner M; Esztermann A; de Groot BL; Grubmüller H
    J Comput Chem; 2015 Oct; 36(26):1990-2008. PubMed ID: 26238484
    [TBL] [Abstract][Full Text] [Related]  

  • 36. GPUs Outperform Current HPC and Neuromorphic Solutions in Terms of Speed and Energy When Simulating a Highly-Connected Cortical Model.
    Knight JC; Nowotny T
    Front Neurosci; 2018; 12():941. PubMed ID: 30618570
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Open-Source Multi-GPU-Accelerated QM/MM Simulations with AMBER and QUICK.
    Cruzeiro VWD; Manathunga M; Merz KM; Götz AW
    J Chem Inf Model; 2021 May; 61(5):2109-2115. PubMed ID: 33913331
    [TBL] [Abstract][Full Text] [Related]  

  • 38. GENIE: a software package for gene-gene interaction analysis in genetic association studies using multiple GPU or CPU cores.
    Chikkagoudar S; Wang K; Li M
    BMC Res Notes; 2011 May; 4():158. PubMed ID: 21615923
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inherent speedup limitations in multiple time step/particle mesh Ewald algorithms.
    Barash D; Yang L; Qian X; Schlick T
    J Comput Chem; 2003 Jan; 24(1):77-88. PubMed ID: 12483677
    [TBL] [Abstract][Full Text] [Related]  

  • 40. GPU acceleration of Monte Carlo simulations for polarized photon scattering in anisotropic turbid media.
    Li P; Liu C; Li X; He H; Ma H
    Appl Opt; 2016 Sep; 55(27):7468-76. PubMed ID: 27661571
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.