These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 22328905)

  • 1. Root carbon and protein metabolism associated with heat tolerance.
    Huang B; Rachmilevitch S; Xu J
    J Exp Bot; 2012 May; 63(9):3455-65. PubMed ID: 22328905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Root respiratory characteristics associated with plant adaptation to high soil temperature for geothermal and turf-type Agrostis species.
    Rachmilevitch S; Lambers H; Huang B
    J Exp Bot; 2006; 57(3):623-31. PubMed ID: 16396999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Root Antioxidant Mechanisms in Relation to Root Thermotolerance in Perennial Grass Species Contrasting in Heat Tolerance.
    Xu Y; Burgess P; Huang B
    PLoS One; 2015; 10(9):e0138268. PubMed ID: 26382960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential proteomic response to heat stress in thermal Agrostis scabra and heat-sensitive Agrostis stolonifera.
    Xu C; Huang B
    Physiol Plant; 2010 Jun; 139(2):192-204. PubMed ID: 20113435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Short-term and long-term root respiratory acclimation to elevated temperatures associated with root thermotolerance for two Agrostis grass species.
    Rachmilevitch S; Lambers H; Huang B
    J Exp Bot; 2008; 59(14):3803-9. PubMed ID: 18977747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and characterization of an expansin gene AsEXP1 associated with heat tolerance in C3 Agrostis grass species.
    Xu J; Tian J; Belanger FC; Huang B
    J Exp Bot; 2007; 58(13):3789-96. PubMed ID: 17928368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Root proteomic responses to heat stress in two Agrostis grass species contrasting in heat tolerance.
    Xu C; Huang B
    J Exp Bot; 2008; 59(15):4183-94. PubMed ID: 19008411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assimilation and allocation of carbon and nitrogen of thermal and nonthermal Agrostis species in response to high soil temperature.
    Rachmilevitch S; Huang B; Lambers H
    New Phytol; 2006; 170(3):479-90. PubMed ID: 16626470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomic changes associated with expression of a gene (ipt) controlling cytokinin synthesis for improving heat tolerance in a perennial grass species.
    Xu Y; Gianfagna T; Huang B
    J Exp Bot; 2010 Jul; 61(12):3273-89. PubMed ID: 20547565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of proteins associated with water-deficit tolerance in C4 perennial grass species, Cynodon dactylon×Cynodon transvaalensis and Cynodon dactylon.
    Zhao Y; Du H; Wang Z; Huang B
    Physiol Plant; 2011 Jan; 141(1):40-55. PubMed ID: 21029106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptomic analysis reveals unique molecular factors for lipid hydrolysis, secondary cell-walls and oxidative protection associated with thermotolerance in perennial grass.
    Xu Y; Huang B
    BMC Genomics; 2018 Jan; 19(1):70. PubMed ID: 29357827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactive effects of soil temperature and moisture on Concord grape root respiration.
    Huang X; Lakso AN; Eissenstat DM
    J Exp Bot; 2005 Oct; 56(420):2651-60. PubMed ID: 16143721
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification and characterization of proteins associated with plant tolerance to heat stress.
    Huang B; Xu C
    J Integr Plant Biol; 2008 Oct; 50(10):1230-7. PubMed ID: 19017110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Respiratory costs and rate of protein turnover in the roots of a fast-growing (Dactylis glomerata L.) and a slow-growing (Festuca ovina L.) grass species.
    Scheurwater I; Dünnebacke M; Eising R; Lambers H
    J Exp Bot; 2000 Jun; 51(347):1089-97. PubMed ID: 10948236
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heat shock proteins in relation to heat stress tolerance of creeping bentgrass at different N levels.
    Wang K; Zhang X; Goatley M; Ervin E
    PLoS One; 2014; 9(7):e102914. PubMed ID: 25050702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. γ-Aminobutyric Acid Enhances Heat Tolerance Associated with the Change of Proteomic Profiling in Creeping Bentgrass.
    Li Z; Zeng W; Cheng B; Huang T; Peng Y; Zhang X
    Molecules; 2020 Sep; 25(18):. PubMed ID: 32961841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of calcium on antioxidant activities and water relations associated with heat tolerance in two cool-season grasses.
    Jiang Y; Huang B
    J Exp Bot; 2001 Feb; 52(355):341-9. PubMed ID: 11283179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The proteomic response of the mussel congeners Mytilus galloprovincialis and M. trossulus to acute heat stress: implications for thermal tolerance limits and metabolic costs of thermal stress.
    Tomanek L; Zuzow MJ
    J Exp Biol; 2010 Oct; 213(Pt 20):3559-74. PubMed ID: 20889836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of heat stress-responsive genes in heat-adapted thermal Agrostis scabra by suppression subtractive hybridization.
    Tian J; Belanger FC; Huang B
    J Plant Physiol; 2009 Apr; 166(6):588-601. PubMed ID: 18950897
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heat induced changes in protein expression profiles of Norway spruce (Picea abies) ecotypes from different elevations.
    Valcu CM; Lalanne C; Plomion C; Schlink K
    Proteomics; 2008 Oct; 8(20):4287-302. PubMed ID: 18814337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.