These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 22328919)

  • 1. The role of hydrogeography and climate in the landscape epidemiology of West Nile virus in New York State from 2000 to 2010.
    Walsh MG
    PLoS One; 2012; 7(2):e30620. PubMed ID: 22328919
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Seasonal temperatures and hydrological conditions improve the prediction of West Nile virus infection rates in Culex mosquitoes and human case counts in New York and Connecticut.
    Keyel AC; Elison Timm O; Backenson PB; Prussing C; Quinones S; McDonough KA; Vuille M; Conn JE; Armstrong PM; Andreadis TG; Kramer LD
    PLoS One; 2019; 14(6):e0217854. PubMed ID: 31158250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Landscape, demographic, entomological, and climatic associations with human disease incidence of West Nile virus in the state of Iowa, USA.
    DeGroote JP; Sugumaran R; Brend SM; Tucker BJ; Bartholomay LC
    Int J Health Geogr; 2008 May; 7():19. PubMed ID: 18452604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Factors associated with human West Nile virus infection in Ontario: a generalized linear mixed modelling approach.
    Mallya S; Sander B; Roy-Gagnon MH; Taljaard M; Jolly A; Kulkarni MA
    BMC Infect Dis; 2018 Mar; 18(1):141. PubMed ID: 29587649
    [TBL] [Abstract][Full Text] [Related]  

  • 5. West Nile virus is predicted to be more geographically widespread in New York State and Connecticut under future climate change.
    Keyel AC; Raghavendra A; Ciota AT; Elison Timm O
    Glob Chang Biol; 2021 Nov; 27(21):5430-5445. PubMed ID: 34392584
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and validation of a climate-based ensemble prediction model for West Nile Virus infection rates in Culex mosquitoes, Suffolk County, New York.
    Little E; Campbell SR; Shaman J
    Parasit Vectors; 2016 Aug; 9(1):443. PubMed ID: 27507279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A continental risk assessment of West Nile virus under climate change.
    Harrigan RJ; Thomassen HA; Buermann W; Smith TB
    Glob Chang Biol; 2014 Aug; 20(8):2417-25. PubMed ID: 24574161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Remote sensing of climatic anomalies and West Nile virus incidence in the northern Great Plains of the United States.
    Chuang TW; Wimberly MC
    PLoS One; 2012; 7(10):e46882. PubMed ID: 23071656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. West Nile Virus infection in Northern Italy: Case-crossover study on the short-term effect of climatic parameters.
    Moirano G; Gasparrini A; Acquaotta F; Fratianni S; Merletti F; Maule M; Richiardi L
    Environ Res; 2018 Nov; 167():544-549. PubMed ID: 30145430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Environmental and Sociological Factors Associated with the Incidence of West Nile Virus Cases in the Northern San Joaquin Valley of California, 2011-2015.
    Hernandez E; Torres R; Joyce AL
    Vector Borne Zoonotic Dis; 2019 Nov; 19(11):851-858. PubMed ID: 31211639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Landscape, demographic and climatic associations with human West Nile virus occurrence regionally in 2012 in the United States of America.
    DeGroote JP; Sugumaran R; Ecker M
    Geospat Health; 2014 Nov; 9(1):153-68. PubMed ID: 25545933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Update: Surveillance for West Nile virus in overwintering mosquitoes--New York, 2000.
    Centers for Disease Control and Prevention (CDC)
    MMWR Morb Mortal Wkly Rep; 2000 Mar; 49(9):178-9. PubMed ID: 11795498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Factors associated with the risk of West Nile virus among crows in New York State.
    DeCarlo CH; Clark AB; McGowan KJ; Ziegler PE; Glaser AL; Szonyi B; Mohammed HO
    Zoonoses Public Health; 2011 Jun; 58(4):270-5. PubMed ID: 20707862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. West Nile virus infection.
    Guharoy R; Gilroy SA; Noviasky JA; Ference J
    Am J Health Syst Pharm; 2004 Jun; 61(12):1235-41. PubMed ID: 15259752
    [TBL] [Abstract][Full Text] [Related]  

  • 15. National and regional associations between human West Nile virus incidence and demographic, landscape, and land use conditions in the coterminous United States.
    DeGroote JP; Sugumaran R
    Vector Borne Zoonotic Dis; 2012 Aug; 12(8):657-65. PubMed ID: 22607071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Meteorological conditions associated with increased incidence of West Nile virus disease in the United States, 2004-2012.
    Hahn MB; Monaghan AJ; Hayden MH; Eisen RJ; Delorey MJ; Lindsey NP; Nasci RS; Fischer M
    Am J Trop Med Hyg; 2015 May; 92(5):1013-22. PubMed ID: 25802435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Avian GIS models signal human risk for West Nile virus in Mississippi.
    Cooke WH; Grala K; Wallis RC
    Int J Health Geogr; 2006 Aug; 5():36. PubMed ID: 16945154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing the Influence of Climate on the Spatial Pattern of West Nile Virus Incidence in the United States.
    Gorris ME; Randerson JT; Coffield SR; Treseder KK; Zender CS; Xu C; Manore CA
    Environ Health Perspect; 2023 Apr; 131(4):47016. PubMed ID: 37104243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. West Nile virus in Ontario, Canada: A twelve-year analysis of human case prevalence, mosquito surveillance, and climate data.
    Giordano BV; Kaur S; Hunter FF
    PLoS One; 2017; 12(8):e0183568. PubMed ID: 28829827
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dry weather induces outbreaks of human West Nile virus infections.
    Wang G; Minnis RB; Belant JL; Wax CL
    BMC Infect Dis; 2010 Feb; 10():38. PubMed ID: 20181272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.