BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 22329140)

  • 1. Behaviour of RO98pHt polyamide membrane in reverse osmosis and low reverse osmosis conditions for phenol removal.
    Hidalgo AM; León G; Gómez M; Murcia MD; Gómez E; Gómez JL
    Environ Technol; 2011 Oct; 32(13-14):1497-502. PubMed ID: 22329140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of bisphenol A (BPA) from water by various nanofiltration (NF) and reverse osmosis (RO) membranes.
    Yüksel S; Kabay N; Yüksel M
    J Hazard Mater; 2013 Dec; 263 Pt 2():307-10. PubMed ID: 23731784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of the removal of hydrophobic trace organic contaminants by forward osmosis and reverse osmosis.
    Xie M; Nghiem LD; Price WE; Elimelech M
    Water Res; 2012 May; 46(8):2683-92. PubMed ID: 22402269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-performance multi-functional reverse osmosis membranes obtained by carbon nanotube·polyamide nanocomposite.
    Inukai S; Cruz-Silva R; Ortiz-Medina J; Morelos-Gomez A; Takeuchi K; Hayashi T; Tanioka A; Araki T; Tejima S; Noguchi T; Terrones M; Endo M
    Sci Rep; 2015 Sep; 5():13562. PubMed ID: 26333385
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of organic micro-pollutants (phenol, aniline and nitrobenzene) via forward osmosis (FO) process: Evaluation of FO as an alternative method to reverse osmosis (RO).
    Cui Y; Liu XY; Chung TS; Weber M; Staudt C; Maletzko C
    Water Res; 2016 Mar; 91():104-14. PubMed ID: 26773492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization and effect of biofouling on polyamide reverse osmosis and nanofiltration membrane surfaces.
    Khan MM; Stewart PS; Moll DJ; Mickols WE; Nelson SE; Camper AK
    Biofouling; 2011 Feb; 27(2):173-83. PubMed ID: 21253926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reverse osmosis membrane rejection for ersatz space mission wastewaters.
    Yoon Y; Lueptow RM
    Water Res; 2005 Sep; 39(14):3298-308. PubMed ID: 16005043
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling the effect of charge density in the active layers of reverse osmosis and nanofiltration membranes on the rejection of arsenic(III) and potassium iodide.
    Coronell O; Mi B; Mariñas BJ; Cahill DG
    Environ Sci Technol; 2013 Jan; 47(1):420-8. PubMed ID: 23199291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of toxic ions (chromate, arsenate, and perchlorate) using reverse osmosis, nanofiltration, and ultrafiltration membranes.
    Yoon J; Amy G; Chung J; Sohn J; Yoon Y
    Chemosphere; 2009 Sep; 77(2):228-35. PubMed ID: 19679331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rejection of pharmaceuticals by forward osmosis membranes.
    Jin X; Shan J; Wang C; Wei J; Tang CY
    J Hazard Mater; 2012 Aug; 227-228():55-61. PubMed ID: 22640821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Membrane technology applied to acid mine drainage from copper mining.
    Ambiado K; Bustos C; Schwarz A; Bórquez R
    Water Sci Technol; 2017 Feb; 75(3-4):705-715. PubMed ID: 28192364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rejection of trace organic compounds by high-pressure membranes.
    Kim TU; Amy G; Drewes JE
    Water Sci Technol; 2005; 51(6-7):335-44. PubMed ID: 16003994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced partitioning and transport of phenolic micropollutants within polyamide composite membranes.
    Drazevic E; Bason S; Kosutic K; Freger V
    Environ Sci Technol; 2012 Mar; 46(6):3377-83. PubMed ID: 22260225
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fouling of reverse osmosis and nanofiltration membranes by dairy industry effluents.
    Turan M; Ates A; Inanc B
    Water Sci Technol; 2002; 45(12):355-60. PubMed ID: 12201123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rejection of micropollutants by clean and fouled forward osmosis membrane.
    Valladares Linares R; Yangali-Quintanilla V; Li Z; Amy G
    Water Res; 2011 Dec; 45(20):6737-44. PubMed ID: 22055122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of silica fouling on the removal of pharmaceuticals and personal care products by nanofiltration and reverse osmosis membranes.
    Lin YL; Chiou JH; Lee CH
    J Hazard Mater; 2014 Jul; 277():102-9. PubMed ID: 24560524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tailoring the structure of thin film nanocomposite membranes to achieve seawater RO membrane performance.
    Lind ML; Eumine Suk D; Nguyen TV; Hoek EM
    Environ Sci Technol; 2010 Nov; 44(21):8230-5. PubMed ID: 20942398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Online monitoring of N-nitrosodimethylamine rejection as a performance indicator of trace organic chemical removal by reverse osmosis.
    Fujioka T; Takeuchi H; Tanaka H; Kodamatani H
    Chemosphere; 2018 Jun; 200():80-85. PubMed ID: 29475031
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluating the impacts of membrane type, coating, fouling, chemical properties and water chemistry on reverse osmosis rejection of seven nitrosoalklyamines, including NDMA.
    Steinle-Darling E; Zedda M; Plumlee MH; Ridgway HF; Reinhard M
    Water Res; 2007 Sep; 41(17):3959-67. PubMed ID: 17582457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of feed solution chemistry on low pressure reverse osmosis filtration of cesium and strontium.
    Ding S; Yang Y; Huang H; Liu H; Hou LA
    J Hazard Mater; 2015 Aug; 294():27-34. PubMed ID: 25841084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.