These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 22329155)

  • 1. Study of composition change and agglomeration of flue gas cleaning residue from a fluidized bed waste incinerator.
    Lievens P; Verbinnen B; Bollaert P; Alderweireldt N; Mertens G; Elsen J; Vandecasteele C
    Environ Technol; 2011 Oct; 32(13-14):1637-47. PubMed ID: 22329155
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polycyclic aromatic hydrocarbon (PAH) emission from co-firing municipal solid waste (MSW) and coal in a fluidized bed incinerator.
    You X
    Waste Manag; 2008; 28(9):1543-51. PubMed ID: 17996438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon monoxide formation and emissions during waste incineration in a grate-circulating fluidized bed incinerator.
    Yanguo Zhang ; Qinghai Li ; Aihong Meng ; Changhe Chen
    Waste Manag Res; 2011 Mar; 29(3):294-308. PubMed ID: 20421246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Partitioning and removal of dioxin-like congeners in flue gases treated with activated carbon adsorption.
    Chi KH; Chang SH; Huang CH; Huang HC; Chang MB
    Chemosphere; 2006 Aug; 64(9):1489-98. PubMed ID: 16488462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Concentration and congener patterns of polychlorinated biphenyls in industrial and municipal waste incinerator flue gas, Korea.
    Shin SK; Kim KS; You JC; Song BJ; Kim JG
    J Hazard Mater; 2006 May; 133(1-3):53-9. PubMed ID: 16325998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of flue gas cleaning residues from European solid waste incinerators: assessment of various Ca-based sorbent processes.
    Bodénan F; Deniard P
    Chemosphere; 2003 May; 51(5):335-47. PubMed ID: 12597999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of improving flue gas cleaning on characteristics and immobilisation of APC residues from MSW incineration.
    Geysen D; Vandecasteele C; Jaspers M; Brouwers E; Wauters G
    J Hazard Mater; 2006 Jan; 128(1):27-38. PubMed ID: 16386367
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elaboration of new formulations to remove micropollutants in MSWI flue gas.
    Brasseur A; Gambin A; Laudet A; Marien J; Pirard JP
    Chemosphere; 2004 Aug; 56(8):745-56. PubMed ID: 15251289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A sulfur-resistant CuS-modified active coke for mercury removal from municipal solid waste incineration flue gas.
    Liu W; Zhou Y; Hua Y; Peng B; Deng M; Yan N; Qu Z
    Environ Sci Pollut Res Int; 2019 Aug; 26(24):24831-24839. PubMed ID: 31240653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Municipal solid waste incineration in China and the issue of acidification: A review.
    Ji L; Lu S; Yang J; Du C; Chen Z; Buekens A; Yan J
    Waste Manag Res; 2016 Apr; 34(4):280-97. PubMed ID: 26941208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental study on flue gas purifying of MSW incineration using in-pipe jet adsorption techniques.
    Zhong Z; Jin B; Huang Y; Zhou H; Zhang M
    Waste Manag; 2008; 28(10):1923-32. PubMed ID: 18061433
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Industrial hazardous waste treatment featuring a rotary kiln and grate furnace incinerator: a case study in China.
    Ma P; Ma Z; Yan J; Chi Y; Ni M; Cen K
    Waste Manag Res; 2011 Oct; 29(10):1108-12. PubMed ID: 21746756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrated municipal solid waste treatment using a grate furnace incinerator: the Indaver case.
    Vandecasteele C; Wauters G; Arickx S; Jaspers M; Van Gerven T
    Waste Manag; 2007; 27(10):1366-75. PubMed ID: 17049223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characteristics of oily sludge combustion in circulating fluidized beds.
    Zhou L; Jiang X; Liu J
    J Hazard Mater; 2009 Oct; 170(1):175-9. PubMed ID: 19482424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental research on emission and removal of dioxins in flue gas from a co-combustion of MSW and coal incinerator.
    Zhong Z; Jin B; Huang Y; Zhou H; Lan J
    Waste Manag; 2006; 26(6):580-6. PubMed ID: 16054809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emission characteristics of industrial sludge incineration in different operating conditions.
    Chen JC
    Environ Technol; 2004 Nov; 25(11):1285-92. PubMed ID: 15619789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal treatment of landfill leachate and the emission control.
    Atabarut T; Ekinci E
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2006; 41(9):1931-42. PubMed ID: 16849137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal potential of toxic 2378-substituted PCDD/F from incinerator flue gases by waste-derived activated carbons.
    Hajizadeh Y; Onwudili JA; Williams PT
    Waste Manag; 2011 Jun; 31(6):1194-201. PubMed ID: 21334872
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tar removal during the fluidized bed gasification of plastic waste.
    Arena U; Zaccariello L; Mastellone ML
    Waste Manag; 2009 Feb; 29(2):783-91. PubMed ID: 18693006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanomaterial disposal by incineration.
    Holder AL; Vejerano EP; Zhou X; Marr LC
    Environ Sci Process Impacts; 2013 Sep; 15(9):1652-64. PubMed ID: 23880913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.