BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 22329341)

  • 1. Comparative analysis of different label-free mass spectrometry based protein abundance estimates and their correlation with RNA-Seq gene expression data.
    Ning K; Fermin D; Nesvizhskii AI
    J Proteome Res; 2012 Apr; 11(4):2261-71. PubMed ID: 22329341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A multi-model statistical approach for proteomic spectral count quantitation.
    Branson OE; Freitas MA
    J Proteomics; 2016 Jul; 144():23-32. PubMed ID: 27260494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative analysis of statistical methods used for detecting differential expression in label-free mass spectrometry proteomics.
    Langley SR; Mayr M
    J Proteomics; 2015 Nov; 129():83-92. PubMed ID: 26193490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. freeQuant: A Mass Spectrometry Label-Free Quantification Software Tool for Complex Proteome Analysis.
    Deng N; Li Z; Pan C; Duan H
    ScientificWorldJournal; 2015; 2015():137076. PubMed ID: 26665161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A simple peak detection and label-free quantitation algorithm for chromatography-mass spectrometry.
    Aoshima K; Takahashi K; Ikawa M; Kimura T; Fukuda M; Tanaka S; Parry HE; Fujita Y; Yoshizawa AC; Utsunomiya S; Kajihara S; Tanaka K; Oda Y
    BMC Bioinformatics; 2014 Nov; 15(1):376. PubMed ID: 25420746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The utility of mass spectrometry-based proteomic data for validation of novel alternative splice forms reconstructed from RNA-Seq data: a preliminary assessment.
    Ning K; Nesvizhskii AI
    BMC Bioinformatics; 2010 Dec; 11 Suppl 11(Suppl 11):S14. PubMed ID: 21172049
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Label-Based and Label-Free Strategies for Protein Quantitation.
    Anand S; Samuel M; Ang CS; Keerthikumar S; Mathivanan S
    Methods Mol Biol; 2017; 1549():31-43. PubMed ID: 27975282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectral Clustering Improves Label-Free Quantification of Low-Abundant Proteins.
    Griss J; Stanek F; Hudecz O; Dürnberger G; Perez-Riverol Y; Vizcaíno JA; Mechtler K
    J Proteome Res; 2019 Apr; 18(4):1477-1485. PubMed ID: 30859831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental design and data-analysis in label-free quantitative LC/MS proteomics: A tutorial with MSqRob.
    Goeminne LJE; Gevaert K; Clement L
    J Proteomics; 2018 Jan; 171():23-36. PubMed ID: 28391044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. mapDIA: Preprocessing and statistical analysis of quantitative proteomics data from data independent acquisition mass spectrometry.
    Teo G; Kim S; Tsou CC; Collins B; Gingras AC; Nesvizhskii AI; Choi H
    J Proteomics; 2015 Nov; 129():108-120. PubMed ID: 26381204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MS1-based label-free proteomics using a quadrupole orbitrap mass spectrometer.
    Shalit T; Elinger D; Savidor A; Gabashvili A; Levin Y
    J Proteome Res; 2015 Apr; 14(4):1979-86. PubMed ID: 25780947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Corra: Computational framework and tools for LC-MS discovery and targeted mass spectrometry-based proteomics.
    Brusniak MY; Bodenmiller B; Campbell D; Cooke K; Eddes J; Garbutt A; Lau H; Letarte S; Mueller LN; Sharma V; Vitek O; Zhang N; Aebersold R; Watts JD
    BMC Bioinformatics; 2008 Dec; 9():542. PubMed ID: 19087345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental Null Method to Guide the Development of Technical Procedures and to Control False-Positive Discovery in Quantitative Proteomics.
    Shen X; Hu Q; Li J; Wang J; Qu J
    J Proteome Res; 2015 Oct; 14(10):4147-57. PubMed ID: 26051676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative proteome and transcriptome analysis of the archaeon Thermoplasma acidophilum cultured under aerobic and anaerobic conditions.
    Sun N; Pan C; Nickell S; Mann M; Baumeister W; Nagy I
    J Proteome Res; 2010 Sep; 9(9):4839-50. PubMed ID: 20669988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The APEX Quantitative Proteomics Tool: generating protein quantitation estimates from LC-MS/MS proteomics results.
    Braisted JC; Kuntumalla S; Vogel C; Marcotte EM; Rodrigues AR; Wang R; Huang ST; Ferlanti ES; Saeed AI; Fleischmann RD; Peterson SN; Pieper R
    BMC Bioinformatics; 2008 Dec; 9():529. PubMed ID: 19068132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. QPROT: Statistical method for testing differential expression using protein-level intensity data in label-free quantitative proteomics.
    Choi H; Kim S; Fermin D; Tsou CC; Nesvizhskii AI
    J Proteomics; 2015 Nov; 129():121-126. PubMed ID: 26254008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. What is targeted proteomics? A concise revision of targeted acquisition and targeted data analysis in mass spectrometry.
    Borràs E; Sabidó E
    Proteomics; 2017 Sep; 17(17-18):. PubMed ID: 28719092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stable isotope-coded proteomic mass spectrometry.
    Goshe MB; Smith RD
    Curr Opin Biotechnol; 2003 Feb; 14(1):101-9. PubMed ID: 12566009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A straightforward and highly efficient precipitation/on-pellet digestion procedure coupled with a long gradient nano-LC separation and Orbitrap mass spectrometry for label-free expression profiling of the swine heart mitochondrial proteome.
    Duan X; Young R; Straubinger RM; Page B; Cao J; Wang H; Yu H; Canty JM; Qu J
    J Proteome Res; 2009 Jun; 8(6):2838-50. PubMed ID: 19290621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of targeted mass spectrometry in bottom-up proteomics for systems biology research.
    Manes NP; Nita-Lazar A
    J Proteomics; 2018 Oct; 189():75-90. PubMed ID: 29452276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.