BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 22329346)

  • 1. Myristoylation exerts direct and allosteric effects on Gα conformation and dynamics in solution.
    Preininger AM; Kaya AI; Gilbert JA; Busenlehner LS; Armstrong RN; Hamm HE
    Biochemistry; 2012 Mar; 51(9):1911-24. PubMed ID: 22329346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Receptor-mediated changes at the myristoylated amino terminus of Galpha(il) proteins.
    Preininger AM; Parello J; Meier SM; Liao G; Hamm HE
    Biochemistry; 2008 Sep; 47(39):10281-93. PubMed ID: 18771287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trp fluorescence reveals an activation-dependent cation-pi interaction in the Switch II region of Galphai proteins.
    Hamm HE; Meier SM; Liao G; Preininger AM
    Protein Sci; 2009 Nov; 18(11):2326-35. PubMed ID: 19760664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The myristoylated amino terminus of Galpha(i)(1) plays a critical role in the structure and function of Galpha(i)(1) subunits in solution.
    Preininger AM; Van Eps N; Yu NJ; Medkova M; Hubbell WL; Hamm HE
    Biochemistry; 2003 Jul; 42(26):7931-41. PubMed ID: 12834345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Helix dipole movement and conformational variability contribute to allosteric GDP release in Galphai subunits.
    Preininger AM; Funk MA; Oldham WM; Meier SM; Johnston CA; Adhikary S; Kimple AJ; Siderovski DP; Hamm HE; Iverson TM
    Biochemistry; 2009 Mar; 48(12):2630-42. PubMed ID: 19222191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of N-Terminal Myristoylation on the Active Conformation of Gα
    van Keulen SC; Rothlisberger U
    Biochemistry; 2017 Jan; 56(1):271-280. PubMed ID: 27936598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A transient interaction between the phosphate binding loop and switch I contributes to the allosteric network between receptor and nucleotide in Gαi1.
    Thaker TM; Sarwar M; Preininger AM; Hamm HE; Iverson TM
    J Biol Chem; 2014 Apr; 289(16):11331-11341. PubMed ID: 24596087
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational changes in the amino-terminal helix of the G protein alpha(i1) following dissociation from Gbetagamma subunit and activation.
    Medkova M; Preininger AM; Yu NJ; Hubbell WL; Hamm HE
    Biochemistry; 2002 Aug; 41(31):9962-72. PubMed ID: 12146960
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Galphai1 and Galphai3 differentially interact with, and regulate, the G protein-activated K+ channel.
    Ivanina T; Varon D; Peleg S; Rishal I; Porozov Y; Dessauer CW; Keren-Raifman T; Dascal N
    J Biol Chem; 2004 Apr; 279(17):17260-8. PubMed ID: 14963032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two distinct aspects of coupling between Gα(i) protein and G protein-activated K+ channel (GIRK) revealed by fluorescently labeled Gα(i3) protein subunits.
    Berlin S; Tsemakhovich VA; Castel R; Ivanina T; Dessauer CW; Keren-Raifman T; Dascal N
    J Biol Chem; 2011 Sep; 286(38):33223-35. PubMed ID: 21795707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. N-terminal polybasic motifs are required for plasma membrane localization of Galpha(s) and Galpha(q).
    Crouthamel M; Thiyagarajan MM; Evanko DS; Wedegaertner PB
    Cell Signal; 2008 Oct; 20(10):1900-10. PubMed ID: 18647648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequence of interactions in receptor-G protein coupling.
    Herrmann R; Heck M; Henklein P; Henklein P; Kleuss C; Hofmann KP; Ernst OP
    J Biol Chem; 2004 Jun; 279(23):24283-90. PubMed ID: 15007073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping allosteric connections from the receptor to the nucleotide-binding pocket of heterotrimeric G proteins.
    Oldham WM; Van Eps N; Preininger AM; Hubbell WL; Hamm HE
    Proc Natl Acad Sci U S A; 2007 May; 104(19):7927-32. PubMed ID: 17463080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Linking receptor activation to changes in Sw I and II of Gα proteins.
    Hamm HE; Kaya AI; Gilbert JA; Preininger AM
    J Struct Biol; 2013 Oct; 184(1):63-74. PubMed ID: 23466875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Backbone resonance assignments for G protein α(i3) subunit in the GDP-bound state.
    Mase Y; Yokogawa M; Osawa M; Shimada I
    Biomol NMR Assign; 2014 Oct; 8(2):237-41. PubMed ID: 23771857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. N-terminal binding domain of Galpha subunits: involvement of amino acids 11-14 of Galphao in membrane attachment.
    Busconi L; Boutin PM; Denker BM
    Biochem J; 1997 Apr; 323 ( Pt 1)(Pt 1):239-44. PubMed ID: 9173888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of Galpha(i1) bound to a GDP-selective peptide provides insight into guanine nucleotide exchange.
    Johnston CA; Willard FS; Jezyk MR; Fredericks Z; Bodor ET; Jones MB; Blaesius R; Watts VJ; Harden TK; Sondek J; Ramer JK; Siderovski DP
    Structure; 2005 Jul; 13(7):1069-80. PubMed ID: 16004878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The nucleotide exchange factor Ric-8A is a chaperone for the conformationally dynamic nucleotide-free state of Gαi1.
    Thomas CJ; Briknarová K; Hilmer JK; Movahed N; Bothner B; Sumida JP; Tall GG; Sprang SR
    PLoS One; 2011; 6(8):e23197. PubMed ID: 21853086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gbetagamma-activated inwardly rectifying K(+) (GIRK) channel activation kinetics via Galphai and Galphao-coupled receptors are determined by Galpha-specific interdomain interactions that affect GDP release rates.
    Zhang Q; Dickson A; Doupnik CA
    J Biol Chem; 2004 Jul; 279(28):29787-96. PubMed ID: 15123672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. G Protein activation without subunit dissociation depends on a G{alpha}(i)-specific region.
    Frank M; Thümer L; Lohse MJ; Bünemann M
    J Biol Chem; 2005 Jul; 280(26):24584-90. PubMed ID: 15866880
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.