These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 22329500)
1. Manganese doping of magnetic iron oxide nanoparticles: tailoring surface reactivity for a regenerable heavy metal sorbent. Warner CL; Chouyyok W; Mackie KE; Neiner D; Saraf LV; Droubay TC; Warner MG; Addleman RS Langmuir; 2012 Feb; 28(8):3931-7. PubMed ID: 22329500 [TBL] [Abstract][Full Text] [Related]
2. High-performance, superparamagnetic, nanoparticle-based heavy metal sorbents for removal of contaminants from natural waters. Warner CL; Addleman RS; Cinson AD; Droubay TC; Engelhard MH; Nash MA; Yantasee W; Warner MG ChemSusChem; 2010 Jun; 3(6):749-57. PubMed ID: 20468024 [TBL] [Abstract][Full Text] [Related]
3. Simultaneous removal of As, Cd, Cr, Cu, Ni and Zn from stormwater: experimental comparison of 11 different sorbents. Genç-Fuhrman H; Mikkelsen PS; Ledin A Water Res; 2007 Feb; 41(3):591-602. PubMed ID: 17173951 [TBL] [Abstract][Full Text] [Related]
4. Simultaneous removal of Cu, Mn and Zn from drinking water with the use of clinoptilolite and its Fe-modified form. Doula MK Water Res; 2009 Aug; 43(15):3659-72. PubMed ID: 19576609 [TBL] [Abstract][Full Text] [Related]
5. Simultaneous removal of coexistent heavy metals from simulated urban stormwater using four sorbents: a porous iron sorbent and its mixtures with zeolite and crystal gravel. Wu P; Zhou YS J Hazard Mater; 2009 Sep; 168(2-3):674-80. PubMed ID: 19303211 [TBL] [Abstract][Full Text] [Related]
6. Tetravalent manganese feroxyhyte: a novel nanoadsorbent equally selective for As(III) and As(V) removal from drinking water. Tresintsi S; Simeonidis K; Estradé S; Martinez-Boubeta C; Vourlias G; Pinakidou F; Katsikini M; Paloura EC; Stavropoulos G; Mitrakas M Environ Sci Technol; 2013 Sep; 47(17):9699-705. PubMed ID: 23888913 [TBL] [Abstract][Full Text] [Related]
7. Removal of Pb(II), Cd(II), Cu(II), and Zn(II) by hematite nanoparticles: effect of sorbent concentration, pH, temperature, and exhaustion. Shipley HJ; Engates KE; Grover VA Environ Sci Pollut Res Int; 2013 Mar; 20(3):1727-36. PubMed ID: 22645012 [TBL] [Abstract][Full Text] [Related]
8. Magnetic gamma-Fe(2)O(3) nanoparticles coated with poly-l-cysteine for chelation of As(III), Cu(II), Cd(II), Ni(II), Pb(II) and Zn(II). White BR; Stackhouse BT; Holcombe JA J Hazard Mater; 2009 Jan; 161(2-3):848-53. PubMed ID: 18571848 [TBL] [Abstract][Full Text] [Related]
9. EDTA functionalized magnetic nanoparticle sorbents for cadmium and lead contaminated water treatment. Huang Y; Keller AA Water Res; 2015 Sep; 80():159-68. PubMed ID: 26001282 [TBL] [Abstract][Full Text] [Related]
10. Decoration of dandelion-like manganese-doped iron oxide microflowers on plasma-treated biochar for alleviation of heavy metal pollution in water. Kandel DR; Poudel MB; Radoor S; Chang S; Lee J Chemosphere; 2024 Jun; 357():141757. PubMed ID: 38583537 [TBL] [Abstract][Full Text] [Related]
11. Adsorption of heavy metal ions from aqueous solution by polyrhodanine-encapsulated magnetic nanoparticles. Song J; Kong H; Jang J J Colloid Interface Sci; 2011 Jul; 359(2):505-11. PubMed ID: 21543080 [TBL] [Abstract][Full Text] [Related]
12. Direct detection of Pb in urine and Cd, Pb, Cu, and Ag in natural waters using electrochemical sensors immobilized with DMSA functionalized magnetic nanoparticles. Yantasee W; Hongsirikarn K; Warner CL; Choi D; Sangvanich T; Toloczko MB; Warner MG; Fryxell GE; Addleman RS; Timchalk C Analyst; 2008 Mar; 133(3):348-55. PubMed ID: 18299749 [TBL] [Abstract][Full Text] [Related]
13. Metal sorption by peat and algae treated peat: kinetics and factors affecting the process. Lourie E; Gjengedal E Chemosphere; 2011 Oct; 85(5):759-64. PubMed ID: 21788059 [TBL] [Abstract][Full Text] [Related]
14. Sorption kinetics of Fe(II), Zn(II), Co(II), Ni(II), Cd(II), and Fe(II)/Me(II) onto hematite. Jeon BH; Dempsey BA; Burgos WD; Royer RA Water Res; 2003 Oct; 37(17):4135-42. PubMed ID: 12946895 [TBL] [Abstract][Full Text] [Related]
15. Remarkable efficiency of ultrafine superparamagnetic iron(III) oxide nanoparticles toward arsenate removal from aqueous environment. Kilianová M; Prucek R; Filip J; Kolařík J; Kvítek L; Panáček A; Tuček J; Zbořil R Chemosphere; 2013 Nov; 93(11):2690-7. PubMed ID: 24054133 [TBL] [Abstract][Full Text] [Related]
16. Biosorption of heavy metals from industrial waste water by Geobacillus thermodenitrificans. Chatterjee SK; Bhattacharjee I; Chandra G J Hazard Mater; 2010 Mar; 175(1-3):117-25. PubMed ID: 19864059 [TBL] [Abstract][Full Text] [Related]
17. Adsorption of Pb, Cd, Cu, Zn, and Ni to titanium dioxide nanoparticles: effect of particle size, solid concentration, and exhaustion. Engates KE; Shipley HJ Environ Sci Pollut Res Int; 2011 Mar; 18(3):386-95. PubMed ID: 20694836 [TBL] [Abstract][Full Text] [Related]
18. Treatment of heavy metals by iron oxide coated and natural gravel media in Sustainable urban Drainage Systems. Norris MJ; Pulford ID; Haynes H; Dorea CC; Phoenix VR Water Sci Technol; 2013; 68(3):674-80. PubMed ID: 23925197 [TBL] [Abstract][Full Text] [Related]
19. Prediction of metal-adsorption behaviour in the remediation of water contamination using indigenous microorganisms. Fosso-Kankeu E; Mulaba-Bafubiandi AF; Mamba BB; Barnard TG J Environ Manage; 2011 Oct; 92(10):2786-93. PubMed ID: 21737198 [TBL] [Abstract][Full Text] [Related]
20. Effects of adsorbent dose, its particle size and initial arsenic concentration on the removal of arsenic, iron and manganese from simulated ground water by Fe3+ impregnated activated carbon. Mondal P; Majumder CB; Mohanty B J Hazard Mater; 2008 Feb; 150(3):695-702. PubMed ID: 17574333 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]