BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 22329500)

  • 21. Fast removal and recovery of amaranth by modified iron oxide magnetic nanoparticles.
    Zargar B; Parham H; Hatamie A
    Chemosphere; 2009 Jul; 76(4):554-7. PubMed ID: 19345980
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Highly efficient removal of heavy metals by polymer-supported nanosized hydrated Fe(III) oxides: behavior and XPS study.
    Pan B; Qiu H; Pan B; Nie G; Xiao L; Lv L; Zhang W; Zhang Q; Zheng S
    Water Res; 2010 Feb; 44(3):815-24. PubMed ID: 19906397
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Treatment of complex heavy metal wastewater using a multi-staged ferrite process.
    Tu YJ; Chang CK; You CF; Wang SL
    J Hazard Mater; 2012 Mar; 209-210():379-84. PubMed ID: 22316684
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management.
    Zhao G; Li J; Ren X; Chen C; Wang X
    Environ Sci Technol; 2011 Dec; 45(24):10454-62. PubMed ID: 22070750
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Exploration of remediation of acid rock drainage with clinoptilolite as sorbent in a slurry bubble column for both heavy metal capture and regeneration.
    Cui H; Li LY; Grace JR
    Water Res; 2006 Oct; 40(18):3359-66. PubMed ID: 16962631
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Removal of heavy metal ions by iron oxide coated sewage sludge.
    Phuengprasop T; Sittiwong J; Unob F
    J Hazard Mater; 2011 Feb; 186(1):502-7. PubMed ID: 21167637
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mn-Ce-Co complex oxide nanoparticles: hydrothermal synthesis and their catalytic subcritical oxidation of 4,4'-Dibromobiphenyl.
    Chen J; Xu T; Ding J; Ji Y; Ni P; Li Z
    J Hazard Mater; 2012 Oct; 235-236():85-91. PubMed ID: 22841801
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modified iron oxide nanoparticles as solid phase extractor for spectrophotometeric determination and separation of basic fuchsin.
    Zargar B; Parham H; Hatamie A
    Talanta; 2009 Feb; 77(4):1328-31. PubMed ID: 19084644
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biosorption mechanism of nine different heavy metals onto biomatrix from rice husk.
    Krishnani KK; Meng X; Christodoulatos C; Boddu VM
    J Hazard Mater; 2008 May; 153(3):1222-34. PubMed ID: 18006228
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A spectroscopic and photochemical study of Ag(+)-, Cu(2+)-, Hg(2+)-, and Bi(3+)-doped Cd(x)Zn(1-x)S nanoparticles.
    Dzhagan VM; Stroyuk OL; Rayevska OE; Kuchmiy SY; Valakh MY; Azhniuk YM; von Borczyskowski C; Zahn DR
    J Colloid Interface Sci; 2010 May; 345(2):515-23. PubMed ID: 20189580
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cd
    Liu L; Peng Q; Qiu G; Zhu J; Tan W; Liu C; Zheng L; Dang Z
    Environ Pollut; 2019 Jan; 244():783-791. PubMed ID: 30388682
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phragmites australis: a novel biosorbent for the removal of heavy metals from aqueous solution.
    Southichak B; Nakano K; Nomura M; Chiba N; Nishimura O
    Water Res; 2006 Jul; 40(12):2295-302. PubMed ID: 16766011
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A layered magnetic iron/iron oxide nanoscavenger for the analytical enrichment of ng-L(-1) concentration levels of heavy metals from water.
    Karatapanis AE; Petrakis DE; Stalikas CD
    Anal Chim Acta; 2012 May; 726():22-7. PubMed ID: 22541009
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Efficient removal of heavy metals from aqueous solutions using Mn-doped FeOOH: Performance and mechanisms.
    Li M; Kang Y; Ma H; Dong J; Wang Y; Kuang S
    Environ Res; 2023 Aug; 231(Pt 1):116161. PubMed ID: 37196694
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Adsorption of Cd2+ on carboxyl-terminated superparamagnetic iron oxide nanoparticles.
    Feng Z; Zhu S; Martins de Godoi DR; Samia AC; Scherson D
    Anal Chem; 2012 Apr; 84(8):3764-70. PubMed ID: 22428526
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Heavy metals (Cd, Pb, Zn, Ni, Cu and Cr(III)) removal from water in Malaysia: post treatment by high quality limestone.
    Aziz HA; Adlan MN; Ariffin KS
    Bioresour Technol; 2008 Apr; 99(6):1578-83. PubMed ID: 17540556
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Combined effects of Cu, Cd, Pb, and Zn on the growth and uptake of consortium of Cu-resistant Penicillium sp. A1 and Cd-resistant Fusarium sp. A19.
    Pan R; Cao L; Zhang R
    J Hazard Mater; 2009 Nov; 171(1-3):761-6. PubMed ID: 19592158
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Maghemite nanoparticles for As(V) removal: desorption characteristics and adsorbent recovery.
    Tuutijärvi T; Vahalaa R; Sillanpitää M; Chen G
    Environ Technol; 2012 Sep; 33(16-18):1927-36. PubMed ID: 23240185
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Heavy metal removal from water/wastewater by nanosized metal oxides: a review.
    Hua M; Zhang S; Pan B; Zhang W; Lv L; Zhang Q
    J Hazard Mater; 2012 Apr; 211-212():317-31. PubMed ID: 22018872
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Succinate-bonded cellulose: a regenerable and powerful sorbent for cadmium-removal from spiked high-hardness groundwater.
    Belhalfaoui B; Aziz A; Elandaloussi el H; Ouali MS; De Ménorval LC
    J Hazard Mater; 2009 Sep; 169(1-3):831-7. PubMed ID: 19428180
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.