These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
256 related articles for article (PubMed ID: 22329655)
81. Diverse molecular targets for therapeutic strategies in Alzheimer's disease. Han SH; Mook-Jung I J Korean Med Sci; 2014 Jul; 29(7):893-902. PubMed ID: 25045220 [TBL] [Abstract][Full Text] [Related]
82. Molecular insights into mechanisms of the cell death program: role in the progression of neurodegenerative disorders. Culmsee C; Landshamer S Curr Alzheimer Res; 2006 Sep; 3(4):269-83. PubMed ID: 17017859 [TBL] [Abstract][Full Text] [Related]
83. Modulating endoplasmic reticulum stress in APP/PS1 mice by Gomisin B and Osthole in Bushen-Yizhi formula: Synergistic effects and therapeutic implications for Alzheimer's disease. Liu J; Wu Q; Wu Q; Zhong G; Liang Y; Gu Y; Hu Y; Wang W; Hao N; Fang S; Li W; Pan H; Wang Q; Fang J Phytomedicine; 2023 Oct; 119():155023. PubMed ID: 37586159 [TBL] [Abstract][Full Text] [Related]
84. The Implications of Autophagy in Alzheimer's Disease. Hamano T; Hayashi K; Shirafuji N; Nakamoto Y Curr Alzheimer Res; 2018; 15(14):1283-1296. PubMed ID: 30289076 [TBL] [Abstract][Full Text] [Related]
85. Loss of HRD1-mediated protein degradation causes amyloid precursor protein accumulation and amyloid-beta generation. Kaneko M; Koike H; Saito R; Kitamura Y; Okuma Y; Nomura Y J Neurosci; 2010 Mar; 30(11):3924-32. PubMed ID: 20237263 [TBL] [Abstract][Full Text] [Related]
86. Glucocorticoids increase amyloid-beta and tau pathology in a mouse model of Alzheimer's disease. Green KN; Billings LM; Roozendaal B; McGaugh JL; LaFerla FM J Neurosci; 2006 Aug; 26(35):9047-56. PubMed ID: 16943563 [TBL] [Abstract][Full Text] [Related]
87. Screening of treatment targets for Alzheimer's disease from the molecular mechanisms of impairment by β-amyloid aggregation and tau hyperphosphorylation. Lin LF; Luo HM Neurosci Bull; 2011 Feb; 27(1):53-60. PubMed ID: 21270904 [TBL] [Abstract][Full Text] [Related]
88. Somatodendritic accumulation of Tau in Alzheimer's disease is promoted by Fyn-mediated local protein translation. Li C; Götz J EMBO J; 2017 Nov; 36(21):3120-3138. PubMed ID: 28864542 [TBL] [Abstract][Full Text] [Related]
89. Rab6 is increased in Alzheimer's disease brain and correlates with endoplasmic reticulum stress. Scheper W; Hoozemans JJ; Hoogenraad CC; Rozemuller AJ; Eikelenboom P; Baas F Neuropathol Appl Neurobiol; 2007 Oct; 33(5):523-32. PubMed ID: 17573808 [TBL] [Abstract][Full Text] [Related]
90. Crosstalk between endoplasmic reticulum stress and brain inflammation in Alzheimer's disease. Santos LE; Ferreira ST Neuropharmacology; 2018 Jul; 136(Pt B):350-360. PubMed ID: 29129774 [TBL] [Abstract][Full Text] [Related]
91. Presenilins as Drug Targets for Alzheimer's Disease-Recent Insights from Cell Biology and Electrophysiology as Novel Opportunities in Drug Development. Duncan RS; Song B; Koulen P Int J Mol Sci; 2018 May; 19(6):. PubMed ID: 29857474 [TBL] [Abstract][Full Text] [Related]
92. Role of Amyloid-β and Tau Proteins in Alzheimer's Disease: Confuting the Amyloid Cascade. Gulisano W; Maugeri D; Baltrons MA; Fà M; Amato A; Palmeri A; D'Adamio L; Grassi C; Devanand DP; Honig LS; Puzzo D; Arancio O J Alzheimers Dis; 2018; 64(s1):S611-S631. PubMed ID: 29865055 [TBL] [Abstract][Full Text] [Related]
93. Molecular Mechanisms of ER Stress and UPR in the Pathogenesis of Alzheimer's Disease. Uddin MS; Tewari D; Sharma G; Kabir MT; Barreto GE; Bin-Jumah MN; Perveen A; Abdel-Daim MM; Ashraf GM Mol Neurobiol; 2020 Jul; 57(7):2902-2919. PubMed ID: 32430843 [TBL] [Abstract][Full Text] [Related]
94. The oDGal Mouse: A Novel, Physiologically Relevant Rodent Model of Sporadic Alzheimer's Disease. Chadwick W; Maudsley S; Hull W; Havolli E; Boshoff E; Hill MDW; Goetghebeur PJD; Harrison DC; Nizami S; Bedford DC; Coope G; Real K; Thiemermann C; Maycox P; Carlton M; Cole SL Int J Mol Sci; 2023 Apr; 24(8):. PubMed ID: 37108119 [TBL] [Abstract][Full Text] [Related]
95. Bioenergetic Impairment in the Neuro-Glia-Vascular Unit: An Emerging Physiopathology during Aging. Yuan M; Wang Y; Wang S; Huang Z; Jin F; Zou Q; Li J; Pu Y; Cai Z Aging Dis; 2021 Dec; 12(8):2080-2095. PubMed ID: 34881087 [TBL] [Abstract][Full Text] [Related]
96. Shared Blood Transcriptomic Signatures between Alzheimer's Disease and Diabetes Mellitus. Lee T; Lee H Biomedicines; 2021 Jan; 9(1):. PubMed ID: 33406707 [TBL] [Abstract][Full Text] [Related]
97. Network pharmacology-based study on the mechanism of Kun C; Feiyi S; Jian D; Feng C; Guihua W; Jiangping Z; Jianwu J; Hong L; Xiaowei H Indian J Pharmacol; 2020; 52(2):94-101. PubMed ID: 32565596 [TBL] [Abstract][Full Text] [Related]
98. GRK5 - A Functional Bridge Between Cardiovascular and Neurodegenerative Disorders. Hendrickx JO; van Gastel J; Leysen H; Santos-Otte P; Premont RT; Martin B; Maudsley S Front Pharmacol; 2018; 9():1484. PubMed ID: 30618771 [TBL] [Abstract][Full Text] [Related]
99. G Protein-Coupled Receptor Systems as Crucial Regulators of DNA Damage Response Processes. Leysen H; van Gastel J; Hendrickx JO; Santos-Otte P; Martin B; Maudsley S Int J Mol Sci; 2018 Sep; 19(10):. PubMed ID: 30261591 [TBL] [Abstract][Full Text] [Related]
100. Hypothermia Reduces Mortality, Prevents the Calcium Plateau, and Is Neuroprotective Following Status Epilepticus in Rats. Phillips KF; Deshpande LS; DeLorenzo RJ Front Neurol; 2018; 9():438. PubMed ID: 29942282 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]