BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 22330195)

  • 1. A formulation of tissue- and water-equivalent materials using the stoichiometric analysis method for CT-number calibration in radiotherapy treatment planning.
    Yohannes I; Kolditz D; Langner O; Kalender WA
    Phys Med Biol; 2012 Mar; 57(5):1173-90. PubMed ID: 22330195
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Technical Note: Radiation properties of tissue- and water-equivalent materials formulated using the stoichiometric analysis method in charged particle therapy.
    Yohannes I; Hild S; Vasiliniuc S; Langner O; Graeff C; Bert C
    Med Phys; 2016 Jan; 43(1):308. PubMed ID: 26745924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Semiempirical analysis of materials' elemental composition to formulate tissue-equivalent materials: a preliminary study.
    Yohannes I; Kolditz D; Kalender WA
    Phys Med Biol; 2011 May; 56(10):2963-77. PubMed ID: 21490386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Revisiting the single-energy CT calibration for proton therapy treatment planning: a critical look at the stoichiometric method.
    Gomà C; Almeida IP; Verhaegen F
    Phys Med Biol; 2018 Nov; 63(23):235011. PubMed ID: 30474618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Range accuracy in carbon ion treatment planning based on CT-calibration with real tissue samples.
    Rietzel E; Schardt D; Haberer T
    Radiat Oncol; 2007 Mar; 2():14. PubMed ID: 17381831
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual-energy CT-based material extraction for tissue segmentation in Monte Carlo dose calculations.
    Bazalova M; Carrier JF; Beaulieu L; Verhaegen F
    Phys Med Biol; 2008 May; 53(9):2439-56. PubMed ID: 18421124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CT number calibration audit in photon radiation therapy.
    Nakao M; Ozawa S; Miura H; Yamada K; Hayata M; Hayashi K; Kawahara D; Nakashima T; Ochi Y; Okumura T; Kunimoto H; Kawakubo A; Kusaba H; Nozaki H; Habara K; Tohyama N; Nishio T; Nakamura M; Minemura T; Okamoto H; Ishikawa M; Kurooka M; Shimizu H; Hotta K; Saito M; Nakano M; Tsuneda M; Nagata Y
    Med Phys; 2024 Mar; 51(3):1571-1582. PubMed ID: 38112216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A stoichiometric calibration method for dual energy computed tomography.
    Bourque AE; Carrier JF; Bouchard H
    Phys Med Biol; 2014 Apr; 59(8):2059-88. PubMed ID: 24694786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A parametrization of the CT number of a substance and its use for stoichiometric calibration.
    Martinez LC; Calzado A; Rodriguez C; Gilarranz R; Manzanas MJ
    Phys Med; 2012 Jan; 28(1):33-42. PubMed ID: 21419682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A particle track-repeating algorithm for proton beam dose calculation.
    Li JS; Shahine B; Fourkal E; Ma CM
    Phys Med Biol; 2005 Mar; 50(5):1001-10. PubMed ID: 15798272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of field-of-view and patient size on CT numbers from cone-beam computed tomography.
    Seet KY; Barghi A; Yartsev S; Van Dyk J
    Phys Med Biol; 2009 Oct; 54(20):6251-62. PubMed ID: 19794246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ion range estimation by using dual energy computed tomography.
    Hünemohr N; Krauss B; Dinkel J; Gillmann C; Ackermann B; Jäkel O; Greilich S
    Z Med Phys; 2013 Dec; 23(4):300-13. PubMed ID: 23597413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The calibration of CT Hounsfield units for radiotherapy treatment planning.
    Schneider U; Pedroni E; Lomax A
    Phys Med Biol; 1996 Jan; 41(1):111-24. PubMed ID: 8685250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical variance analysis of single- and dual-energy computed tomography methods for calculating proton stopping power ratios of biological tissues.
    Yang M; Virshup G; Clayton J; Zhu XR; Mohan R; Dong L
    Phys Med Biol; 2010 Mar; 55(5):1343-62. PubMed ID: 20145291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dose to 'water-like' media or dose to tissue in MV photons radiotherapy treatment planning: still a matter of debate.
    Andreo P
    Phys Med Biol; 2015 Jan; 60(1):309-37. PubMed ID: 25503312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cone beam computerized tomography: the effect of calibration of the Hounsfield unit number to electron density on dose calculation accuracy for adaptive radiation therapy.
    Hatton J; McCurdy B; Greer PB
    Phys Med Biol; 2009 Aug; 54(15):N329-46. PubMed ID: 19590116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physical evaluation of CT scan methods for radiation therapy planning: comparison of fast, slow and gating scan using the 256-detector row CT scanner.
    Mori S; Kanematsu N; Mizuno H; Sunaoka M; Endo M
    Phys Med Biol; 2006 Feb; 51(3):587-600. PubMed ID: 16424583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of CT image noise on proton range calculation in radiotherapy planning.
    Chvetsov AV; Paige SL
    Phys Med Biol; 2010 Mar; 55(6):N141-9. PubMed ID: 20182006
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Evaluation of the electron density phantom CIRS Model 62].
    Pemler P; Schneider U; Besserer J
    Z Med Phys; 2001; 11(1):25-32. PubMed ID: 11487856
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dosimetric impact of a CT metal artefact suppression algorithm for proton, electron and photon therapies.
    Wei J; Sandison GA; Hsi WC; Ringor M; Lu X
    Phys Med Biol; 2006 Oct; 51(20):5183-97. PubMed ID: 17019032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.