These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
368 related articles for article (PubMed ID: 22330342)
1. Loss of angiotensin-converting enzyme 2 enhances TGF-β/Smad-mediated renal fibrosis and NF-κB-driven renal inflammation in a mouse model of obstructive nephropathy. Liu Z; Huang XR; Chen HY; Penninger JM; Lan HY Lab Invest; 2012 May; 92(5):650-61. PubMed ID: 22330342 [TBL] [Abstract][Full Text] [Related]
2. Deletion of Angiotensin-Converting Enzyme-2 Promotes Hypertensive Nephropathy by Targeting Smad7 for Ubiquitin Degradation. Liu Z; Huang XR; Chen HY; Fung E; Liu J; Lan HY Hypertension; 2017 Oct; 70(4):822-830. PubMed ID: 28808068 [TBL] [Abstract][Full Text] [Related]
3. Disruption of the Smad7 gene promotes renal fibrosis and inflammation in unilateral ureteral obstruction (UUO) in mice. Chung AC; Huang XR; Zhou L; Heuchel R; Lai KN; Lan HY Nephrol Dial Transplant; 2009 May; 24(5):1443-54. PubMed ID: 19096081 [TBL] [Abstract][Full Text] [Related]
4. Smad3 mediates ANG II-induced hypertensive kidney disease in mice. Liu Z; Huang XR; Lan HY Am J Physiol Renal Physiol; 2012 Apr; 302(8):F986-97. PubMed ID: 22237801 [TBL] [Abstract][Full Text] [Related]
5. Disruption of Smad7 promotes ANG II-mediated renal inflammation and fibrosis via Sp1-TGF-β/Smad3-NF.κB-dependent mechanisms in mice. Liu GX; Li YQ; Huang XR; Wei L; Chen HY; Shi YJ; Heuchel RL; Lan HY PLoS One; 2013; 8(1):e53573. PubMed ID: 23301086 [TBL] [Abstract][Full Text] [Related]
6. Diverse roles of TGF-β receptor II in renal fibrosis and inflammation in vivo and in vitro. Meng XM; Huang XR; Xiao J; Chen HY; Zhong X; Chung AC; Lan HY J Pathol; 2012 Jun; 227(2):175-88. PubMed ID: 22190171 [TBL] [Abstract][Full Text] [Related]
7. Dual deficiency of angiotensin-converting enzyme-2 and Mas receptor enhances angiotensin II-induced hypertension and hypertensive nephropathy. Ni J; Yang F; Huang XR; Meng J; Chen J; Bader M; Penninger JM; Fung E; Yu XQ; Lan HY J Cell Mol Med; 2020 Nov; 24(22):13093-13103. PubMed ID: 32971570 [TBL] [Abstract][Full Text] [Related]
8. Effects of exendin-4 on the intrarenal renin-angiotensin system and interstitial fibrosis in unilateral ureteral obstruction mice: Exendin-4 and unilateral ureteral obstruction. Le Y; Zheng Z; Xue J; Cheng M; Guan M; Xue Y J Renin Angiotensin Aldosterone Syst; 2016 Oct; 17(4):. PubMed ID: 27913661 [TBL] [Abstract][Full Text] [Related]
9. C-reactive protein promotes acute renal inflammation and fibrosis in unilateral ureteral obstructive nephropathy in mice. Li ZI; Chung AC; Zhou L; Huang XR; Liu F; Fu P; Fan JM; Szalai AJ; Lan HY Lab Invest; 2011 Jun; 91(6):837-51. PubMed ID: 21383672 [TBL] [Abstract][Full Text] [Related]
10. Angiotensin II induces connective tissue growth factor and collagen I expression via transforming growth factor-beta-dependent and -independent Smad pathways: the role of Smad3. Yang F; Chung AC; Huang XR; Lan HY Hypertension; 2009 Oct; 54(4):877-84. PubMed ID: 19667256 [TBL] [Abstract][Full Text] [Related]
11. Anti-renal fibrosis effect of asperulosidic acid via TGF-β1/smad2/smad3 and NF-κB signaling pathways in a rat model of unilateral ureteral obstruction. Xianyuan L; Wei Z; Yaqian D; Dan Z; Xueli T; Zhanglu D; Guanyi L; Lan T; Menghua L Phytomedicine; 2019 Feb; 53():274-285. PubMed ID: 30668407 [TBL] [Abstract][Full Text] [Related]
12. Prevention of angiotensin II-mediated renal oxidative stress, inflammation, and fibrosis by angiotensin-converting enzyme 2. Zhong J; Guo D; Chen CB; Wang W; Schuster M; Loibner H; Penninger JM; Scholey JW; Kassiri Z; Oudit GY Hypertension; 2011 Feb; 57(2):314-22. PubMed ID: 21189404 [TBL] [Abstract][Full Text] [Related]
13. Down-regulation of Smad7 expression by ubiquitin-dependent degradation contributes to renal fibrosis in obstructive nephropathy in mice. Fukasawa H; Yamamoto T; Togawa A; Ohashi N; Fujigaki Y; Oda T; Uchida C; Kitagawa K; Hattori T; Suzuki S; Kitagawa M; Hishida A Proc Natl Acad Sci U S A; 2004 Jun; 101(23):8687-92. PubMed ID: 15173588 [TBL] [Abstract][Full Text] [Related]
14. MiR-101a ameliorates AngII-mediated hypertensive nephropathy by blockade of TGFβ/Smad3 and NF-κB signalling in a mouse model of hypertension. Ding H; Zhou Y; Huang H Clin Exp Pharmacol Physiol; 2019 Mar; 46(3):246-254. PubMed ID: 30304543 [TBL] [Abstract][Full Text] [Related]
15. Petchiether A attenuates obstructive nephropathy by suppressing TGF-β/Smad3 and NF-κB signalling. You YK; Luo Q; Wu WF; Zhang JJ; Zhu HJ; Lao L; Lan HY; Chen HY; Cheng YX J Cell Mol Med; 2019 Aug; 23(8):5576-5587. PubMed ID: 31211499 [TBL] [Abstract][Full Text] [Related]
16. Kidney-targeting Smad7 gene transfer inhibits renal TGF-β/MAD homologue (SMAD) and nuclear factor κB (NF-κB) signalling pathways, and improves diabetic nephropathy in mice. Ka SM; Yeh YC; Huang XR; Chao TK; Hung YJ; Yu CP; Lin TJ; Wu CC; Lan HY; Chen A Diabetologia; 2012 Feb; 55(2):509-19. PubMed ID: 22086159 [TBL] [Abstract][Full Text] [Related]
17. Transforming growth factor-beta-dependent and -independent pathways of induction of tubulointerstitial fibrosis in beta6(-/-) mice. Ma LJ; Yang H; Gaspert A; Carlesso G; Barty MM; Davidson JM; Sheppard D; Fogo AB Am J Pathol; 2003 Oct; 163(4):1261-73. PubMed ID: 14507636 [TBL] [Abstract][Full Text] [Related]
18. Deletion of Smad3 protects against C-reactive protein-induced renal fibrosis and inflammation in obstructive nephropathy. You YK; Wu WF; Huang XR; Li HD; Ren YP; Zeng JC; Chen H; Lan HY Int J Biol Sci; 2021; 17(14):3911-3922. PubMed ID: 34671208 [No Abstract] [Full Text] [Related]
19. Suppression of Elp2 prevents renal fibrosis and inflammation induced by unilateral ureter obstruction (UUO) via inactivating Stat3-regulated TGF-β1 and NF-κB pathways. Lu S; Fan HW; Li K; Fan XD Biochem Biophys Res Commun; 2018 Jun; 501(2):400-407. PubMed ID: 29723529 [TBL] [Abstract][Full Text] [Related]
20. Disruption of Smad4 impairs TGF-β/Smad3 and Smad7 transcriptional regulation during renal inflammation and fibrosis in vivo and in vitro. Meng XM; Huang XR; Xiao J; Chung AC; Qin W; Chen HY; Lan HY Kidney Int; 2012 Feb; 81(3):266-79. PubMed ID: 22048127 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]