These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Efficient light amplification in low gain materials due to a photonic band edge effect. Ondič L; Pelant I Opt Express; 2012 Mar; 20(7):7071-80. PubMed ID: 22453388 [TBL] [Abstract][Full Text] [Related]
7. A colloidal quantum dot photonic crystal phosphor: nanostructural engineering of the phosphor for enhanced color conversion. Min K; Jung H; Park Y; Cho KS; Roh YG; Hwang SW; Jeon H Nanoscale; 2017 Jun; 9(25):8703-8709. PubMed ID: 28616943 [TBL] [Abstract][Full Text] [Related]
8. Enhanced fluorescence emission from quantum dots on a photonic crystal surface. Ganesh N; Zhang W; Mathias PC; Chow E; Soares JA; Malyarchuk V; Smith AD; Cunningham BT Nat Nanotechnol; 2007 Aug; 2(8):515-20. PubMed ID: 18654350 [TBL] [Abstract][Full Text] [Related]
9. Computational study of power conversion and luminous efficiency performance for semiconductor quantum dot nanophosphors on light-emitting diodes. Erdem T; Nizamoglu S; Demir HV Opt Express; 2012 Jan; 20(3):3275-95. PubMed ID: 22330566 [TBL] [Abstract][Full Text] [Related]
10. Heralded generation of multipartite entanglement for one photon by using a single two-dimensional nonlinear photonic crystal. Shi J; Xu P; Zhong ML; Gong YX; Bai YF; Yu WJ; Li QW; Jin H; Zhu SN Opt Express; 2013 Apr; 21(7):7875-81. PubMed ID: 23571878 [TBL] [Abstract][Full Text] [Related]
11. Coupled-wave analysis for photonic-crystal surface-emitting lasers on air holes with arbitrary sidewalls. Peng C; Liang Y; Sakai K; Iwahashi S; Noda S Opt Express; 2011 Nov; 19(24):24672-86. PubMed ID: 22109495 [TBL] [Abstract][Full Text] [Related]
12. Self-assembled quantum dot-sensitized multivalent DNA photonic wires. Boeneman K; Prasuhn DE; Blanco-Canosa JB; Dawson PE; Melinger JS; Ancona M; Stewart MH; Susumu K; Huston A; Medintz IL J Am Chem Soc; 2010 Dec; 132(51):18177-90. PubMed ID: 21141858 [TBL] [Abstract][Full Text] [Related]
14. Study of different spectral regions and delay bandwidth relation in slow light photonic crystal waveguides. Kurt H; Ustün K; Ayas L Opt Express; 2010 Dec; 18(26):26965-77. PubMed ID: 21196973 [TBL] [Abstract][Full Text] [Related]
15. Perfectly matched layer absorption boundary condition in planewave based transfer-scattering matrix method for photonic crystal device simulation. Li M; Hu X; Ye Z; Ho KM; Cao J; Miyawaki M Opt Express; 2008 Jul; 16(15):11548-54. PubMed ID: 18648476 [TBL] [Abstract][Full Text] [Related]
16. Wideband slow light and dispersion control in oblique lattice photonic crystal waveguides. Leng FC; Liang WY; Liu B; Wang TB; Wang HZ Opt Express; 2010 Mar; 18(6):5707-12. PubMed ID: 20389586 [TBL] [Abstract][Full Text] [Related]
17. All-optical logic gates based on two-dimensional low-refractive-index nonlinear photonic crystal slabs. Liu Y; Qin F; Meng ZM; Zhou F; Mao QH; Li ZY Opt Express; 2011 Jan; 19(3):1945-53. PubMed ID: 21369010 [TBL] [Abstract][Full Text] [Related]
18. Four-wave mixing analysis of quantum dot semiconductor lasers for linewidth enhancement factor extraction. Lin CH; Lin HH; Lin FY Opt Express; 2012 Jan; 20(1):101-10. PubMed ID: 22274333 [TBL] [Abstract][Full Text] [Related]
19. A proposal for enhancing four-wave mixing in slow light engineered photonic crystal waveguides and its application to optical regeneration. Ebnali-Heidari M; Monat C; Grillet C; Moravvej-Farshi MK Opt Express; 2009 Sep; 17(20):18340-53. PubMed ID: 19907625 [TBL] [Abstract][Full Text] [Related]
20. Second-harmonic generation from a single core/shell quantum dot. Zielinski M; Oron D; Chauvat D; Zyss J Small; 2009 Dec; 5(24):2835-40. PubMed ID: 19842111 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]