These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 22330495)

  • 1. Optical and electrical study of organic solar cells with a 2D grating anode.
    Sha WE; Choy WC; Wu Y; Chew WC
    Opt Express; 2012 Jan; 20(3):2572-80. PubMed ID: 22330495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light harvesting improvement of organic solar cells with self-enhanced active layer designs.
    Chen L; Sha WE; Choy WC
    Opt Express; 2012 Mar; 20(7):8175-85. PubMed ID: 22453487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Incorporation of nanovoids into metallic gratings for broadband plasmonic organic solar cells.
    Lee S; In S; Mason DR; Park N
    Opt Express; 2013 Feb; 21(4):4055-60. PubMed ID: 23481940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light concentration and redistribution in polymer solar cells by plasmonic nanoparticles.
    Zhu J; Xue M; Hoekstra R; Xiu F; Zeng B; Wang KL
    Nanoscale; 2012 Mar; 4(6):1978-81. PubMed ID: 22354350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Broadband absorption enhancement achieved by optical layer mediated plasmonic solar cell.
    Ren W; Zhang G; Wu Y; Ding H; Shen Q; Zhang K; Li J; Pan N; Wang X
    Opt Express; 2011 Dec; 19(27):26536-50. PubMed ID: 22274238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comprehensive study for the plasmonic thin-film solar cell with periodic structure.
    Sha WE; Choy WC; Chew WC
    Opt Express; 2010 Mar; 18(6):5993-6007. PubMed ID: 20389619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparing plasmonic and dielectric gratings for absorption enhancement in thin-film organic solar cells.
    Le KQ; Abass A; Maes B; Bienstman P; Alù A
    Opt Express; 2012 Jan; 20(1):A39-50. PubMed ID: 22379677
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmonic effects in amorphous silicon thin film solar cells with metal back contacts.
    Palanchoke U; Jovanov V; Kurz H; Obermeyer P; Stiebig H; Knipp D
    Opt Express; 2012 Mar; 20(6):6340-7. PubMed ID: 22418515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photocurrent generation in nanostructured organic solar cells.
    Yang F; Forrest SR
    ACS Nano; 2008 May; 2(5):1022-32. PubMed ID: 19206500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling light trapping in nanostructured solar cells.
    Ferry VE; Polman A; Atwater HA
    ACS Nano; 2011 Dec; 5(12):10055-64. PubMed ID: 22082201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmonic-enhanced organic photovoltaics: breaking the 10% efficiency barrier.
    Gan Q; Bartoli FJ; Kafafi ZH
    Adv Mater; 2013 May; 25(17):2385-96. PubMed ID: 23417974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A hybrid analysis method for plasmonic enhanced terahertz photomixer sources.
    Jafarlou S; Neshat M; Safavi-Naeini S
    Opt Express; 2013 May; 21(9):11115-24. PubMed ID: 23669968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding the plasmonic properties of dewetting formed Ag nanoparticles for large area solar cell applications.
    Günendi MC; Tanyeli İ; Akgüç GB; Bek A; Turan R; Gülseren O
    Opt Express; 2013 Jul; 21(15):18344-53. PubMed ID: 23938706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Imprinting localized plasmons for enhanced solar cells.
    Dunbar RB; Pfadler T; Lal NN; Baumberg JJ; Schmidt-Mende L
    Nanotechnology; 2012 Sep; 23(38):385202. PubMed ID: 22948008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of the light trapping induced by surface plasmons and antireflection film in crystalline silicon solar cells.
    Xu R; Wang X; Song L; Liu W; Ji A; Yang F; Li J
    Opt Express; 2012 Feb; 20(5):5061-8. PubMed ID: 22418311
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmonic-dielectric compound grating with high group-index and transmission.
    Dai L; Liu Y; Jiang C
    Opt Express; 2011 Jan; 19(2):1461-9. PubMed ID: 21263688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Collective behavior of impedance matched plasmonic nanocavities.
    Polyakov A; Zolotorev M; Schuck PJ; Padmore HA
    Opt Express; 2012 Mar; 20(7):7685-93. PubMed ID: 22453447
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light trapping in thin-film silicon solar cells with submicron surface texture.
    Dewan R; Marinkovic M; Noriega R; Phadke S; Salleo A; Knipp D
    Opt Express; 2009 Dec; 17(25):23058-65. PubMed ID: 20052232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial distribution of absorption in plasmonic thin film solar cells.
    Chao CC; Wang CM; Chang JY
    Opt Express; 2010 May; 18(11):11763-71. PubMed ID: 20589037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct optical measurement of light coupling into planar waveguide by plasmonic nanoparticles.
    Pennanen AM; Toppari JJ
    Opt Express; 2013 Jan; 21 Suppl 1():A23-35. PubMed ID: 23389272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.