These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 22330505)

  • 1. Dual-beam-scan Doppler optical coherence angiography for birefringence-artifact-free vasculature imaging.
    Makita S; Jaillon F; Yamanari M; Yasuno Y
    Opt Express; 2012 Jan; 20(3):2681-92. PubMed ID: 22330505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comprehensive in vivo micro-vascular imaging of the human eye by dual-beam-scan Doppler optical coherence angiography.
    Makita S; Jaillon F; Yamanari M; Miura M; Yasuno Y
    Opt Express; 2011 Jan; 19(2):1271-83. PubMed ID: 21263668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-penetration swept source Doppler optical coherence angiography by fully numerical phase stabilization.
    Hong YJ; Makita S; Jaillon F; Ju MJ; Min EJ; Lee BH; Itoh M; Miura M; Yasuno Y
    Opt Express; 2012 Jan; 20(3):2740-60. PubMed ID: 22330511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Full-range polarization-sensitive swept-source optical coherence tomography by simultaneous transversal and spectral modulation.
    Yamanari M; Makita S; Lim Y; Yasuno Y
    Opt Express; 2010 Jun; 18(13):13964-80. PubMed ID: 20588529
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional retinal and choroidal capillary imaging by power Doppler optical coherence angiography with adaptive optics.
    Kurokawa K; Sasaki K; Makita S; Hong YJ; Yasuno Y
    Opt Express; 2012 Sep; 20(20):22796-812. PubMed ID: 23037430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Motion-insensitive optical coherence tomography based micro-angiography.
    Chi TT; Lee CK; Wu CT; Yang CC; Tsai MT; Chiang CP
    Opt Express; 2011 Dec; 19(27):26117-31. PubMed ID: 22274200
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parabolic BM-scan technique for full range Doppler spectral domain optical coherence tomography.
    Jaillon F; Makita S; Yabusaki M; Yasuno Y
    Opt Express; 2010 Jan; 18(2):1358-72. PubMed ID: 20173963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transit-time analysis based on delay-encoded beam shape for velocity vector quantification by spectral-domain Doppler optical coherence tomography.
    Meng J; Ding Z; Li J; Wang K; Wu T
    Opt Express; 2010 Jan; 18(2):1261-70. PubMed ID: 20173950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variable velocity range imaging of the choroid with dual-beam optical coherence angiography.
    Jaillon F; Makita S; Yasuno Y
    Opt Express; 2012 Jan; 20(1):385-96. PubMed ID: 22274362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous dual-band optical coherence tomography in the spectral domain for high resolution in vivo imaging.
    Cimalla P; Walther J; Mehner M; Cuevas M; Koch E
    Opt Express; 2009 Oct; 17(22):19486-500. PubMed ID: 19997169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination.
    Mujat M; Park BH; Cense B; Chen TC; de Boer JF
    J Biomed Opt; 2007; 12(4):041205. PubMed ID: 17867794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrahigh-speed non-invasive widefield angiography.
    Blatter C; Klein T; Grajciar B; Schmoll T; Wieser W; Andre R; Huber R; Leitgeb RA
    J Biomed Opt; 2012 Jul; 17(7):070505. PubMed ID: 22894461
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-velocity-flow imaging with real-time Doppler optical coherence tomography.
    Villey R; Carrion L; Morneau D; Boudoux C; Maciejko R
    Appl Opt; 2010 Jun; 49(16):3140-9. PubMed ID: 20517385
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Doppler optical micro-angiography for volumetric imaging of vascular perfusion in vivo.
    Wang RK; An L
    Opt Express; 2009 May; 17(11):8926-40. PubMed ID: 19466142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo thickness and birefringence determination of the human retinal nerve fiber layer using polarization-sensitive optical coherence tomography.
    Cense B; Chen TC; de Boer JF
    Bull Soc Belge Ophtalmol; 2006; (302):109-21. PubMed ID: 17265793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generalized Jones matrix optical coherence tomography: performance and local birefringence imaging.
    Makita S; Yamanari M; Yasuno Y
    Opt Express; 2010 Jan; 18(2):854-76. PubMed ID: 20173907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Full-range Fourier domain Doppler optical coherence tomography based on sinusoidal phase modulation.
    Nan N; Wang X; Bu P; Li Z; Guo X; Chen Y; Wang X; Yuan F; Sasaki O
    Appl Opt; 2014 Apr; 53(12):2669-76. PubMed ID: 24787594
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High speed, wide velocity dynamic range Doppler optical coherence tomography (Part IV): split spectrum processing in rotary catheter probes.
    Vuong B; Lee AM; Luk TW; Sun C; Lam S; Lane P; Yang VX
    Opt Express; 2014 Apr; 22(7):7399-415. PubMed ID: 24718115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [2-dimensional mapping and retinal and papillary microcirculation using scanning laser Doppler flowmetry].
    Michelson G; Groh M; Langhans M; Schmauss B
    Klin Monbl Augenheilkd; 1995 Sep; 207(3):180-90. PubMed ID: 7474787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polarization-sensitive optical coherence tomography based on polarization-maintaining fibers and frequency multiplexing.
    Al-Qaisi MK; Akkin T
    Opt Express; 2008 Aug; 16(17):13032-41. PubMed ID: 18711542
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.