BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 22331035)

  • 1. Photovoltaic properties of dye-sensitized solar cells associated with amphiphilic structure of ruthenium complex dyes.
    Liu KY; Hsu CL; Ni JS; Ho KC; Lin KF
    J Colloid Interface Sci; 2012 Apr; 372(1):73-9. PubMed ID: 22331035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of tethering alkyl chains for amphiphilic ruthenium complex dyes on their adsorption to titanium oxide and photovoltaic properties.
    Ni JS; Hung CY; Liu KY; Chang YH; Ho KC; Lin KF
    J Colloid Interface Sci; 2012 Nov; 386(1):359-65. PubMed ID: 22925118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amphiphilic ruthenium sensitizers and their applications in dye-sensitized solar cells.
    Klein C; Nazeeruddin MK; Di Censo D; Liska P; Grätzel M
    Inorg Chem; 2004 Jul; 43(14):4216-26. PubMed ID: 15236533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large pi-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells.
    Imahori H; Umeyama T; Ito S
    Acc Chem Res; 2009 Nov; 42(11):1809-18. PubMed ID: 19408942
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-wavelength sensitization of TiO2 by ruthenium diimine compounds with low-lying π* orbitals.
    Johansson PG; Rowley JG; Taheri A; Meyer GJ; Singh SP; Islam A; Han L
    Langmuir; 2011 Dec; 27(23):14522-31. PubMed ID: 21913708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel fluorous amphiphilic heteroleptic Ru-based complexes for a dye-sensitized solar cell: the first fluorous bis-ponytailed amphiphilic Ru complexes.
    Lu N; Shing JS; Tu WH; Hsu YC; Lin JT
    Inorg Chem; 2011 May; 50(10):4289-94. PubMed ID: 21491926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers.
    Nazeeruddin MK; De Angelis F; Fantacci S; Selloni A; Viscardi G; Liska P; Ito S; Takeru B; Grätzel M
    J Am Chem Soc; 2005 Dec; 127(48):16835-47. PubMed ID: 16316230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of 4-guanidinobutyric acid as coadsorbent in reducing recombination in dye-sensitized solar cells.
    Zhang Z; Zakeeruddin SM; O'Regan BC; Humphry-Baker R; Grätzel M
    J Phys Chem B; 2005 Nov; 109(46):21818-24. PubMed ID: 16853833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electronic and molecular surface structure of Ru(tcterpy)(NCS)3 and Ru(dcbpy)2(NCS)2 adsorbed from solution onto nanostructured TiO2: a photoelectron spectroscopy study.
    Johansson EM; Hedlund M; Siegbahn H; Rensmo H
    J Phys Chem B; 2005 Dec; 109(47):22256-63. PubMed ID: 16853898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cycloruthenated sensitizers: improving the dye-sensitized solar cell with classical inorganic chemistry principles.
    Robson KC; Bomben PG; Berlinguette CP
    Dalton Trans; 2012 Jul; 41(26):7814-29. PubMed ID: 22643695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Excited-state metal-to-ligand charge transfer dynamics of a ruthenium(II) dye in solution and adsorbed on TiO2 nanoparticles from resonance Raman spectroscopy.
    Shoute LC; Loppnow GR
    J Am Chem Soc; 2003 Dec; 125(50):15636-46. PubMed ID: 14664612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photocurrent enhancement of dye-sensitized solar cells owing to increased dye-adsorption onto silicon-nanoparticle-coated titanium-dioxide films.
    Ha ES; Yoo B; Baik H; Lee Y; Kim KJ
    Chem Asian J; 2012 Jun; 7(7):1624-9. PubMed ID: 22461424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of dye-adsorption solvent on the performances of the dye-sensitized solar cells based on black dye.
    Ozawa H; Awa M; Ono T; Arakawa H
    Chem Asian J; 2012 Jan; 7(1):156-62. PubMed ID: 22114015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of solvent and bridge structure in alkylthio-substituted triphenylamine dyes on the photovoltaic properties of dye-sensitized solar cells.
    Sakong C; Kim SH; Yuk SB; Namgoong JW; Park SW; Ko MJ; Kim DH; Hong KS; Kim JP
    Chem Asian J; 2012 Aug; 7(8):1817-26. PubMed ID: 22623408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of dye structure on charge recombination in dye-sensitized solar cells.
    Jennings JR; Liu Y; Wang Q; Zakeeruddin SM; Grätzel M
    Phys Chem Chem Phys; 2011 Apr; 13(14):6637-48. PubMed ID: 21380426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Panchromatic sensitization of nanocrystalline TiO2 with cis-Bis(4-carboxy-2-[2'-(4'-carboxypyridyl)]quinoline)bis(thiocyanato-N)ruthenium(II).
    Yanagida M; Yamaguchi T; Kurashige M; Hara K; Katoh R; Sugihara H; Arakawa H
    Inorg Chem; 2003 Dec; 42(24):7921-31. PubMed ID: 14632509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells.
    Boschloo G; Hagfeldt A
    Acc Chem Res; 2009 Nov; 42(11):1819-26. PubMed ID: 19845388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electronic optimization of heteroleptic Ru(II) bipyridine complexes by remote substituents: synthesis, characterization, and application to dye-sensitized solar cells.
    Han WS; Han JK; Kim HY; Choi MJ; Kang YS; Pac C; Kang SO
    Inorg Chem; 2011 Apr; 50(8):3271-80. PubMed ID: 21417428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel hollow mesoporous 1D TiO2 nanofibers as photovoltaic and photocatalytic materials.
    Zhang X; Thavasi V; Mhaisalkar SG; Ramakrishna S
    Nanoscale; 2012 Mar; 4(5):1707-16. PubMed ID: 22315140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interfacial properties of the nanostructured dye-sensitized solid heterojunction TiO(2)/RuL(2)(NCS)(2)/CuI.
    Karlsson PG; Bolik S; Richter JH; Mahrov B; Johansson EM; Blomquist J; Uvdal P; Rensmo H; Siegbahn H; Sandell A
    J Chem Phys; 2004 Jun; 120(23):11224-32. PubMed ID: 15268152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.