These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 22331548)
41. A molecular approach to ascertain the success of "in situ" AM fungi inoculation in the revegetation of a semiarid, degraded land. Alguacil Mdel M; Torrecillas E; Kohler J; Roldán A Sci Total Environ; 2011 Jul; 409(15):2874-80. PubMed ID: 21561643 [TBL] [Abstract][Full Text] [Related]
42. Arbuscular mycorrhiza-induced shifts in foliar metabolism and photosynthesis mirror the developmental stage of the symbiosis and are only partly driven by improved phosphate uptake. Schweiger R; Baier MC; Müller C Mol Plant Microbe Interact; 2014 Dec; 27(12):1403-12. PubMed ID: 25162317 [TBL] [Abstract][Full Text] [Related]
43. Biodiversity of arbuscular mycorrhizal fungi in roots and soils of two salt marshes. Wilde P; Manal A; Stodden M; Sieverding E; Hildebrandt U; Bothe H Environ Microbiol; 2009 Jun; 11(6):1548-61. PubMed ID: 19220401 [TBL] [Abstract][Full Text] [Related]
44. The greater effectiveness of Glomus mosseae and Glomus intraradices in improving productivity, oil content and tolerance of salt-stressed menthol mint (Mentha arvensis). Bharti N; Baghel S; Barnawal D; Yadav A; Kalra A J Sci Food Agric; 2013 Jul; 93(9):2154-61. PubMed ID: 23288591 [TBL] [Abstract][Full Text] [Related]
45. An arbuscular mycorrhizal fungus significantly modifies the soil bacterial community and nitrogen cycling during litter decomposition. Nuccio EE; Hodge A; Pett-Ridge J; Herman DJ; Weber PK; Firestone MK Environ Microbiol; 2013 Jun; 15(6):1870-81. PubMed ID: 23360621 [TBL] [Abstract][Full Text] [Related]
46. The influence of Rhizobium and arbuscular mycorrhizal fungi on nitrogen and phosphorus accumulation by Vicia faba. Jia Y; Gray VM; Straker CJ Ann Bot; 2004 Aug; 94(2):251-8. PubMed ID: 15205177 [TBL] [Abstract][Full Text] [Related]
47. Mycorrhizal frequency, physiological parameters, and yield of strawberry plants inoculated with endomycorrhizal fungi and rhizosphere bacteria. Mikiciuk G; Sas-Paszt L; Mikiciuk M; Derkowska E; Trzciński P; Głuszek S; Lisek A; Wera-Bryl S; Rudnicka J Mycorrhiza; 2019 Oct; 29(5):489-501. PubMed ID: 31264099 [TBL] [Abstract][Full Text] [Related]
48. Arbuscular mycorrhizal colonization of giant sequoia (Sequoiadendron giganteum) in response to restoration practices. Fahey C; York RA; Pawlowska TE Mycologia; 2012; 104(5):988-97. PubMed ID: 22492401 [TBL] [Abstract][Full Text] [Related]
49. Use of plant residues on growth of mycorrhizal seedlings of neem (Azadirachta indica A. Juss.). Monte Júnior IP; Maia LC; Silva FS; Cavalcante UM J Sci Food Agric; 2012 Feb; 92(3):654-9. PubMed ID: 25363647 [TBL] [Abstract][Full Text] [Related]
51. Effects of root-zone acidity on utilization of nitrate and ammonium in tobacco plants. Henry LT; Raper CD J Plant Nutr; 1989; 12(7):811-26. PubMed ID: 11537085 [TBL] [Abstract][Full Text] [Related]
52. Extraradical development and contribution to plant performance of an arbuscular mycorrhizal symbiosis exposed to complete or partial rootzone drying. Neumann E; Schmid B; Römheld V; George E Mycorrhiza; 2009 Nov; 20(1):13-23. PubMed ID: 19499252 [TBL] [Abstract][Full Text] [Related]
53. Rhizophagus irregularis MUCL 41833 can colonize and improve P uptake of Plantago lanceolata after exposure to ionizing gamma radiation in root organ culture. Kothamasi D; Wannijn J; van Hees M; Nauts R; van Gompel A; Vanhoudt N; Cranenbrouck S; Declerck S; Vandenhove H Mycorrhiza; 2016 Apr; 26(3):257-62. PubMed ID: 26467250 [TBL] [Abstract][Full Text] [Related]
54. Arbuscular mycorrhizal fungi can transfer substantial amounts of nitrogen to their host plant from organic material. Leigh J; Hodge A; Fitter AH New Phytol; 2009; 181(1):199-207. PubMed ID: 18811615 [TBL] [Abstract][Full Text] [Related]
55. Arbuscular mycorrhiza enhance the rate of litter decomposition while inhibiting soil microbial community development. Gui H; Hyde K; Xu J; Mortimer P Sci Rep; 2017 Feb; 7():42184. PubMed ID: 28176855 [TBL] [Abstract][Full Text] [Related]
56. Physiological, structural and molecular traits activated in strawberry plants after inoculation with the plant growth-promoting bacterium Azospirillum brasilense REC3. Guerrero-Molina MF; Lovaisa NC; Salazar SM; Martínez-Zamora MG; Díaz-Ricci JC; Pedraza RO Plant Biol (Stuttg); 2015 May; 17(3):766-73. PubMed ID: 25280241 [TBL] [Abstract][Full Text] [Related]
57. Rhizophagus intraradices and Azospirillum brasilense improve growth of herbaceous plants and soil biological activity in revegetation of a recovering coal-mining area. Meyer E; Stoffel SCG; de Almeida AFN; do Amaral Scarsanella J; Vieira AS; Ventura BS; Canei AD; Bortolini JG; de Faria SM; Soares CRFS; Lovato PE Braz J Microbiol; 2024 Sep; 55(3):2827-2837. PubMed ID: 38769246 [TBL] [Abstract][Full Text] [Related]
58. Arbuscular mycorrhizal fungi alter thymol derivative contents of Inula ensifolia L. Zubek S; Stojakowska A; Anielska T; Turnau K Mycorrhiza; 2010 Oct; 20(7):497-504. PubMed ID: 20177715 [TBL] [Abstract][Full Text] [Related]
59. Recently fixed carbon allocation in strawberry plants and concurrent inorganic nitrogen uptake through arbuscular mycorrhizal fungi. Tomè E; Tagliavini M; Scandellari F J Plant Physiol; 2015 May; 179():83-9. PubMed ID: 25841208 [TBL] [Abstract][Full Text] [Related]
60. AM fungi and PGP pseudomonads increase flowering, fruit production, and vitamin content in strawberry grown at low nitrogen and phosphorus levels. Bona E; Lingua G; Manassero P; Cantamessa S; Marsano F; Todeschini V; Copetta A; D'Agostino G; Massa N; Avidano L; Gamalero E; Berta G Mycorrhiza; 2015 Apr; 25(3):181-93. PubMed ID: 25169060 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]