These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 22331616)

  • 21. Food quality effects on copepod growth and development: implications for bioassays in ecotoxicological testing.
    Dahl U; Lind CR; Gorokhova E; Eklund B; Breitholtz M
    Ecotoxicol Environ Saf; 2009 Feb; 72(2):351-7. PubMed ID: 18514311
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Response of copepods to elevated pCO2 and environmental copper as co-stressors--a multigenerational study.
    Fitzer SC; Caldwell GS; Clare AS; Upstill-Goddard RC; Bentley MG
    PLoS One; 2013; 8(8):e71257. PubMed ID: 23951121
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Alleviation of mercury toxicity to a marine copepod under multigenerational exposure by ocean acidification.
    Li Y; Wang WX; Wang M
    Sci Rep; 2017 Mar; 7(1):324. PubMed ID: 28336926
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of elevated CO2 on the reproduction of two calanoid copepods.
    McConville K; Halsband C; Fileman ES; Somerfield PJ; Findlay HS; Spicer JI
    Mar Pollut Bull; 2013 Aug; 73(2):428-34. PubMed ID: 23490345
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Acute and chronic toxicity of cadmium on the copepod Pseudodiaptomus annandalei: A life history traits approach.
    Kadiene EU; Meng PJ; Hwang JS; Souissi S
    Chemosphere; 2019 Oct; 233():396-404. PubMed ID: 31176903
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Developmental stage-specific life-cycle bioassay for assessment of sediment-associated toxicant effects on benthic copepod production.
    Chandler GT; Green AS
    Environ Toxicol Chem; 2001 Jan; 20(1):171-8. PubMed ID: 11351405
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Short-term toxicity tests on the harpacticoid copepod Tisbe battagliai: lethal and reproductive endpoints.
    Diz FR; Araújo CV; Moreno-Garrido I; Hampel M; Blasco J
    Ecotoxicol Environ Saf; 2009 Oct; 72(7):1881-6. PubMed ID: 19362371
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Towards an internationally harmonized test method for reproductive and developmental effects of endocrine disrupters in marine copepods.
    Kusk KO; Wollenberger L
    Ecotoxicology; 2007 Feb; 16(1):183-95. PubMed ID: 17253162
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Maternal polycyclic aromatic hydrocarbon (PAH) transfer and effects on offspring of copepods exposed to dispersed oil with and without oil droplets.
    Hansen BH; Tarrant AM; Salaberria I; Altin D; Nordtug T; Øverjordet IB
    J Toxicol Environ Health A; 2017; 80(16-18):881-894. PubMed ID: 28841382
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A copepod life-cycle test and growth model for interpreting the effects of lindane.
    Brown RJ; Rundle SD; Hutchinson TH; Williams TD; Jones MB
    Aquat Toxicol; 2003 Mar; 63(1):1-11. PubMed ID: 12615417
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Acclimation effect and fitness cost of copper resistance in the marine copepod Tigriopus japonicus.
    Kwok KW; Grist EP; Leung KM
    Ecotoxicol Environ Saf; 2009 Feb; 72(2):358-64. PubMed ID: 18842299
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of 2,4-dihydroxybenzophenone (BP1) on early life-stage development of the marine copepod Acartia tonsa at different temperatures and salinities.
    Kusk KO; Avdolli M; Wollenberger L
    Environ Toxicol Chem; 2011 Apr; 30(4):959-66. PubMed ID: 21194178
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modeling effects of cadmium on population growth of Palaemonetes pugio: results of a full life cycle exposure.
    Manyin T; Rowe CL
    Aquat Toxicol; 2008 Jun; 88(2):111-20. PubMed ID: 18456346
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Toxicity assessment of sediments associated with various land-uses in coastal South Carolina, USA, using a meiobenthic copepod bioassay.
    Bejarano AC; Maruya KA; Chandler GT
    Mar Pollut Bull; 2004 Jul; 49(1-2):23-32. PubMed ID: 15234871
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hydrocarbon contamination decreases mating success in a marine planktonic copepod.
    Seuront L
    PLoS One; 2011; 6(10):e26283. PubMed ID: 22053187
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The ultraviolet filter 3-benzylidene camphor adversely affects reproduction in fathead minnow (Pimephales promelas).
    Kunz PY; Gries T; Fent K
    Toxicol Sci; 2006 Oct; 93(2):311-21. PubMed ID: 16870688
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A microplate freshwater copepod bioassay for evaluating acute and chronic effects of chemicals.
    Brown RJ; Rundle SD; Hutchinson TH; Williams TD; Jones MB
    Environ Toxicol Chem; 2005 Jun; 24(6):1528-31. PubMed ID: 16117133
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Have we been underestimating the effects of ocean acidification in zooplankton?
    Cripps G; Lindeque P; Flynn KJ
    Glob Chang Biol; 2014 Nov; 20(11):3377-85. PubMed ID: 24782283
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanism of acute silver toxicity in the euryhaline copepod Acartia tonsa.
    Pedroso MS; Pinho GL; Rodrigues SC; Bianchini A
    Aquat Toxicol; 2007 May; 82(3):173-80. PubMed ID: 17374407
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of environmentally relevant concentrations of potentially toxic microplastic on coastal copepods.
    Koski M; Søndergaard J; Christensen AM; Nielsen TG
    Aquat Toxicol; 2021 Jan; 230():105713. PubMed ID: 33321251
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.